找回密码
 欢迎注册
楼主: wayne

[讨论] 求一不定积分

[复制链接]
 楼主| 发表于 2018-12-10 23:15:27 | 显示全部楼层
zeroieme 发表于 2018-12-3 21:57
试过MMA自带函数能算,就是觉得那个结果复杂。期待Rubi有个更漂亮表达式。


Rubi的安装其实并不麻烦,自己可以试一试的,如图:
  1. PacletInstall["https://github.com/RuleBasedIntegration/Rubi/releases/download/4.16.0.4/Rubi-4.16.0.4.paclet"]
复制代码


[如果github在线的地址下载不了,可以离线下载了再load]

Screenshot from 2018-12-10 23-14-12.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2018-12-26 18:27:38 | 显示全部楼层
.·.·. 发表于 2018-12-2 11:25
为什么这款软件到了你这里就这么好看了

还有


Sagemath 也可以调用fricas,而且notebook的排版也很不错。参考链接:http://doc.sagemath.org/html/en/ ... ation/integral.html
比如:

Screenshot_2018-12-26_18-26-05.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-12-26 18:55:53 | 显示全部楼层
wayne 发表于 2018-12-26 18:27
Sagemath 也可以调用fricas,而且notebook的排版也很不错。参考链接:http://doc.sagemath.org/html/en ...

终于在这论坛里看见Sagemath了。

点评

哈哈哈。来,扔了一个问题,求解决。  发表于 2018-12-26 19:14
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-4-30 15:51:48 | 显示全部楼层
请教一下这个题
\begin{align*}
\int_0^x\arctan\left(1+\sqrt{1+t^2}\,\right)\mathrm{d}t
\end{align*}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2019-4-30 20:37:50 | 显示全部楼层
用sageMath调用fricas计算的
  1. integrate(arctan(1+sqrt(x^2+1)),x,algorithm="fricas")
复制代码



\[\newcommand{\Bold}[1]{\mathbf{#1}}\frac{4 \, {\left(\sqrt{5} x + x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} \arctan\left(\sqrt{x^{2} + 1} + 1\right) + 4 \, {\left(\sqrt{5} + 1\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} \log\left(-x + \sqrt{x^{2} + 1}\right) - 5^{\frac{1}{4}} {\left(\sqrt{5} + 1\right)} \log\left(\frac{15 \, \sqrt{5} x^{2} + 35 \, x^{2} + 2 \cdot 5^{\frac{1}{4}} {\left(7 \, \sqrt{5} x + 15 \, x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 5 \, \sqrt{5} {\left(3 \, \sqrt{5} + 7\right)}}{5 \, {\left(3 \, \sqrt{5} + 7\right)}}\right) + 5^{\frac{1}{4}} {\left(\sqrt{5} + 1\right)} \log\left(\frac{15 \, \sqrt{5} x^{2} + 35 \, x^{2} - 2 \cdot 5^{\frac{1}{4}} {\left(7 \, \sqrt{5} x + 15 \, x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 5 \, \sqrt{5} {\left(3 \, \sqrt{5} + 7\right)}}{5 \, {\left(3 \, \sqrt{5} + 7\right)}}\right) + 5^{\frac{1}{4}} {\left(\sqrt{5} + 1\right)} \log\left(\frac{10 \, x^{4} + 15 \, x^{2} + 5^{\frac{1}{4}} {\left(3 \, x^{2} + \sqrt{5} {\left(x^{2} + 11\right)} + 25\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 2 \, \sqrt{5} {\left(2 \, x^{4} + 3 \, x^{2} + 5\right)} - {\left(10 \, x^{3} + 5^{\frac{1}{4}} {\left(\sqrt{5} x + 3 \, x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 4 \, \sqrt{5} {\left(x^{3} + x\right)} + 10 \, x\right)} \sqrt{x^{2} + 1} + 2 \, \sqrt{5} {\left(2 \, \sqrt{5} + 5\right)} + 25}{2 \, \sqrt{5} + 5}\right) - 5^{\frac{1}{4}} {\left(\sqrt{5} + 1\right)} \log\left(\frac{10 \, x^{4} + 15 \, x^{2} - 5^{\frac{1}{4}} {\left(3 \, x^{2} + \sqrt{5} {\left(x^{2} + 11\right)} + 25\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 2 \, \sqrt{5} {\left(2 \, x^{4} + 3 \, x^{2} + 5\right)} - {\left(10 \, x^{3} - 5^{\frac{1}{4}} {\left(\sqrt{5} x + 3 \, x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 4 \, \sqrt{5} {\left(x^{3} + x\right)} + 10 \, x\right)} \sqrt{x^{2} + 1} + 2 \, \sqrt{5} {\left(2 \, \sqrt{5} + 5\right)} + 25}{2 \, \sqrt{5} + 5}\right) - 8 \cdot 5^{\frac{1}{4}} \arctan\left(\frac{5^{\frac{1}{4}} {\left(\sqrt{5} + 1\right)}}{\sqrt{\frac{1}{5}} {\left(\sqrt{5} + 1\right)} \sqrt{\frac{15 \, \sqrt{5} x^{2} + 35 \, x^{2} + 2 \cdot 5^{\frac{1}{4}} {\left(7 \, \sqrt{5} x + 15 \, x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 5 \, \sqrt{5} {\left(3 \, \sqrt{5} + 7\right)}}{3 \, \sqrt{5} + 7}} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + {\left(\sqrt{5} x + x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 2 \cdot 5^{\frac{1}{4}}}\right) - 8 \cdot 5^{\frac{1}{4}} \arctan\left(\frac{5^{\frac{1}{4}} {\left(\sqrt{5} + 1\right)}}{\sqrt{\frac{1}{5}} {\left(\sqrt{5} + 1\right)} \sqrt{\frac{15 \, \sqrt{5} x^{2} + 35 \, x^{2} - 2 \cdot 5^{\frac{1}{4}} {\left(7 \, \sqrt{5} x + 15 \, x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 5 \, \sqrt{5} {\left(3 \, \sqrt{5} + 7\right)}}{3 \, \sqrt{5} + 7}} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + {\left(\sqrt{5} x + x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} - 2 \cdot 5^{\frac{1}{4}}}\right) - 8 \cdot 5^{\frac{1}{4}} \arctan\left(-\frac{2 \, {\left(\sqrt{5} + 1\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 5^{\frac{1}{4}} {\left(\sqrt{5} + 3\right)}}{\sqrt{x^{2} + 1} {\left(\sqrt{5} x + x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} - {\left(\sqrt{5} + 1\right)} \sqrt{\frac{10 \, x^{4} + 15 \, x^{2} + 5^{\frac{1}{4}} {\left(3 \, x^{2} + \sqrt{5} {\left(x^{2} + 11\right)} + 25\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 2 \, \sqrt{5} {\left(2 \, x^{4} + 3 \, x^{2} + 5\right)} - {\left(10 \, x^{3} + 5^{\frac{1}{4}} {\left(\sqrt{5} x + 3 \, x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 4 \, \sqrt{5} {\left(x^{3} + x\right)} + 10 \, x\right)} \sqrt{x^{2} + 1} + 2 \, \sqrt{5} {\left(2 \, \sqrt{5} + 5\right)} + 25}{2 \, \sqrt{5} + 5}} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} - {\left(x^{2} + \sqrt{5} {\left(x^{2} + 1\right)} + 1\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} - 5^{\frac{1}{4}} {\left(\sqrt{5} - 1\right)}}\right) + 8 \cdot 5^{\frac{1}{4}} \arctan\left(-\frac{2 \, {\left(\sqrt{5} + 1\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} - 5^{\frac{1}{4}} {\left(\sqrt{5} + 3\right)}}{\sqrt{x^{2} + 1} {\left(\sqrt{5} x + x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} - {\left(\sqrt{5} + 1\right)} \sqrt{\frac{10 \, x^{4} + 15 \, x^{2} - 5^{\frac{1}{4}} {\left(3 \, x^{2} + \sqrt{5} {\left(x^{2} + 11\right)} + 25\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 2 \, \sqrt{5} {\left(2 \, x^{4} + 3 \, x^{2} + 5\right)} - {\left(10 \, x^{3} - 5^{\frac{1}{4}} {\left(\sqrt{5} x + 3 \, x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 4 \, \sqrt{5} {\left(x^{3} + x\right)} + 10 \, x\right)} \sqrt{x^{2} + 1} + 2 \, \sqrt{5} {\left(2 \, \sqrt{5} + 5\right)} + 25}{2 \, \sqrt{5} + 5}} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} - {\left(x^{2} + \sqrt{5} {\left(x^{2} + 1\right)} + 1\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 5^{\frac{1}{4}} {\left(\sqrt{5} - 1\right)}}\right)}{4 \, {\left(\sqrt{5} + 1\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}}}\]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2019-4-30 20:40:28 | 显示全部楼层
用Rubi计算的结果要简洁一些,不过带了虚数在里面:

\[\frac{1}{8} \left(-\sqrt{2 \left(\sqrt{5}+1\right)} \log \left(x^2+\sqrt{2 \left(\sqrt{5}-1\right)} x+\sqrt{5}\right)+\sqrt{2 \left(\sqrt{5}+1\right)} \log \left(x^2-\sqrt{2 \left(\sqrt{5}-1\right)} x+\sqrt{5}\right)+8 x \tan ^{-1}\left(\sqrt{x^2+1}+1\right)+(2-2 i) \sqrt{4+2 i} \tanh ^{-1}\left(\frac{x}{\sqrt{1+\frac{i}{2}} \sqrt{x^2+1}}\right)+(2+2 i) \sqrt{4-2 i} \tanh ^{-1}\left(\frac{x}{\sqrt{1-\frac{i}{2}} \sqrt{x^2+1}}\right)-2 \sqrt{2 \left(\sqrt{5}-1\right)} \tan ^{-1}\left(\frac{\sqrt{2 \left(\sqrt{5}-1\right)}-2 x}{\sqrt{2 \left(\sqrt{5}+1\right)}}\right)+2 \sqrt{2 \left(\sqrt{5}-1\right)} \tan ^{-1}\left(\frac{2 x+\sqrt{2 \left(\sqrt{5}-1\right)}}{\sqrt{2 \left(\sqrt{5}+1\right)}}\right)-8 \sinh ^{-1}(x)\right)\]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-23 03:27 , Processed in 0.068338 second(s), 18 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表