- 注册时间
- 2009-2-12
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 22688
- 在线时间
- 小时
|
楼主 |
发表于 2019-4-30 20:37:50
|
显示全部楼层
用sageMath调用fricas计算的
- integrate(arctan(1+sqrt(x^2+1)),x,algorithm="fricas")
复制代码
\[\newcommand{\Bold}[1]{\mathbf{#1}}\frac{4 \, {\left(\sqrt{5} x + x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} \arctan\left(\sqrt{x^{2} + 1} + 1\right) + 4 \, {\left(\sqrt{5} + 1\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} \log\left(-x + \sqrt{x^{2} + 1}\right) - 5^{\frac{1}{4}} {\left(\sqrt{5} + 1\right)} \log\left(\frac{15 \, \sqrt{5} x^{2} + 35 \, x^{2} + 2 \cdot 5^{\frac{1}{4}} {\left(7 \, \sqrt{5} x + 15 \, x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 5 \, \sqrt{5} {\left(3 \, \sqrt{5} + 7\right)}}{5 \, {\left(3 \, \sqrt{5} + 7\right)}}\right) + 5^{\frac{1}{4}} {\left(\sqrt{5} + 1\right)} \log\left(\frac{15 \, \sqrt{5} x^{2} + 35 \, x^{2} - 2 \cdot 5^{\frac{1}{4}} {\left(7 \, \sqrt{5} x + 15 \, x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 5 \, \sqrt{5} {\left(3 \, \sqrt{5} + 7\right)}}{5 \, {\left(3 \, \sqrt{5} + 7\right)}}\right) + 5^{\frac{1}{4}} {\left(\sqrt{5} + 1\right)} \log\left(\frac{10 \, x^{4} + 15 \, x^{2} + 5^{\frac{1}{4}} {\left(3 \, x^{2} + \sqrt{5} {\left(x^{2} + 11\right)} + 25\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 2 \, \sqrt{5} {\left(2 \, x^{4} + 3 \, x^{2} + 5\right)} - {\left(10 \, x^{3} + 5^{\frac{1}{4}} {\left(\sqrt{5} x + 3 \, x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 4 \, \sqrt{5} {\left(x^{3} + x\right)} + 10 \, x\right)} \sqrt{x^{2} + 1} + 2 \, \sqrt{5} {\left(2 \, \sqrt{5} + 5\right)} + 25}{2 \, \sqrt{5} + 5}\right) - 5^{\frac{1}{4}} {\left(\sqrt{5} + 1\right)} \log\left(\frac{10 \, x^{4} + 15 \, x^{2} - 5^{\frac{1}{4}} {\left(3 \, x^{2} + \sqrt{5} {\left(x^{2} + 11\right)} + 25\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 2 \, \sqrt{5} {\left(2 \, x^{4} + 3 \, x^{2} + 5\right)} - {\left(10 \, x^{3} - 5^{\frac{1}{4}} {\left(\sqrt{5} x + 3 \, x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 4 \, \sqrt{5} {\left(x^{3} + x\right)} + 10 \, x\right)} \sqrt{x^{2} + 1} + 2 \, \sqrt{5} {\left(2 \, \sqrt{5} + 5\right)} + 25}{2 \, \sqrt{5} + 5}\right) - 8 \cdot 5^{\frac{1}{4}} \arctan\left(\frac{5^{\frac{1}{4}} {\left(\sqrt{5} + 1\right)}}{\sqrt{\frac{1}{5}} {\left(\sqrt{5} + 1\right)} \sqrt{\frac{15 \, \sqrt{5} x^{2} + 35 \, x^{2} + 2 \cdot 5^{\frac{1}{4}} {\left(7 \, \sqrt{5} x + 15 \, x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 5 \, \sqrt{5} {\left(3 \, \sqrt{5} + 7\right)}}{3 \, \sqrt{5} + 7}} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + {\left(\sqrt{5} x + x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 2 \cdot 5^{\frac{1}{4}}}\right) - 8 \cdot 5^{\frac{1}{4}} \arctan\left(\frac{5^{\frac{1}{4}} {\left(\sqrt{5} + 1\right)}}{\sqrt{\frac{1}{5}} {\left(\sqrt{5} + 1\right)} \sqrt{\frac{15 \, \sqrt{5} x^{2} + 35 \, x^{2} - 2 \cdot 5^{\frac{1}{4}} {\left(7 \, \sqrt{5} x + 15 \, x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 5 \, \sqrt{5} {\left(3 \, \sqrt{5} + 7\right)}}{3 \, \sqrt{5} + 7}} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + {\left(\sqrt{5} x + x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} - 2 \cdot 5^{\frac{1}{4}}}\right) - 8 \cdot 5^{\frac{1}{4}} \arctan\left(-\frac{2 \, {\left(\sqrt{5} + 1\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 5^{\frac{1}{4}} {\left(\sqrt{5} + 3\right)}}{\sqrt{x^{2} + 1} {\left(\sqrt{5} x + x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} - {\left(\sqrt{5} + 1\right)} \sqrt{\frac{10 \, x^{4} + 15 \, x^{2} + 5^{\frac{1}{4}} {\left(3 \, x^{2} + \sqrt{5} {\left(x^{2} + 11\right)} + 25\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 2 \, \sqrt{5} {\left(2 \, x^{4} + 3 \, x^{2} + 5\right)} - {\left(10 \, x^{3} + 5^{\frac{1}{4}} {\left(\sqrt{5} x + 3 \, x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 4 \, \sqrt{5} {\left(x^{3} + x\right)} + 10 \, x\right)} \sqrt{x^{2} + 1} + 2 \, \sqrt{5} {\left(2 \, \sqrt{5} + 5\right)} + 25}{2 \, \sqrt{5} + 5}} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} - {\left(x^{2} + \sqrt{5} {\left(x^{2} + 1\right)} + 1\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} - 5^{\frac{1}{4}} {\left(\sqrt{5} - 1\right)}}\right) + 8 \cdot 5^{\frac{1}{4}} \arctan\left(-\frac{2 \, {\left(\sqrt{5} + 1\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} - 5^{\frac{1}{4}} {\left(\sqrt{5} + 3\right)}}{\sqrt{x^{2} + 1} {\left(\sqrt{5} x + x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} - {\left(\sqrt{5} + 1\right)} \sqrt{\frac{10 \, x^{4} + 15 \, x^{2} - 5^{\frac{1}{4}} {\left(3 \, x^{2} + \sqrt{5} {\left(x^{2} + 11\right)} + 25\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 2 \, \sqrt{5} {\left(2 \, x^{4} + 3 \, x^{2} + 5\right)} - {\left(10 \, x^{3} - 5^{\frac{1}{4}} {\left(\sqrt{5} x + 3 \, x\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 4 \, \sqrt{5} {\left(x^{3} + x\right)} + 10 \, x\right)} \sqrt{x^{2} + 1} + 2 \, \sqrt{5} {\left(2 \, \sqrt{5} + 5\right)} + 25}{2 \, \sqrt{5} + 5}} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} - {\left(x^{2} + \sqrt{5} {\left(x^{2} + 1\right)} + 1\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}} + 5^{\frac{1}{4}} {\left(\sqrt{5} - 1\right)}}\right)}{4 \, {\left(\sqrt{5} + 1\right)} \sqrt{\frac{\sqrt{5} + 5}{\sqrt{5} + 3}}}\] |
|