找回密码
 欢迎注册
楼主: hejoseph

[讨论] 圆锥曲线的作图问题

[复制链接]
发表于 2019-3-26 20:18:11 | 显示全部楼层
根据楼上椭圆情况有离心率e满足$e^2={1/C-1/A}/{1/C}=1-C/A$
所以得出方程$(1-e^2)A=C$
简化为$e^2(a+c)=(2-e^2)\sqrt{(a-c)^2+4b^2}$
所以如果a,b,c都是某个参数t的一次函数,的确这个结果出来是t的二次方程,所以可以尺规作图
比较有意思的是,e=1时代入正好变化为$ac=b^2$,对应双曲线的情况
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2019-4-8 11:44:31 | 显示全部楼层
本帖最后由 hejoseph 于 2019-4-8 13:45 编辑

陈殿林提到四点和离心率的作图方法:
原理:三角形ABC外接圆锥曲线ABCDE关于该三角形的等角共轭像是直线D'E'。计算表明圆锥曲线ABCDE的离心率e=sqrt(2/(1+k)),其中k=d/R,d是三角形ABC的外心O到D'E'的代数距离(即带有符号),R是三角形ABC的外接圆半径。
作图:首先根据ABC和e作出d,再作圆O(d),D关于三角形ABC的等角共轭点D',D'关于圆O(d)的切线的等角共轭像就是所求圆锥曲线。
这个方法作图是很简单的。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 17:12 , Processed in 0.020255 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表