找回密码
 欢迎注册
楼主: haizhou

[讨论] 一道几何题求角度

[复制链接]
发表于 2023-9-17 09:59:52 来自手机 | 显示全部楼层
这些题就没难度,十几年前我就写了篇文章,解析几何精髓,给出了这类题的通用解法。

就算不知道塞瓦定理,用三角形基本的正弦定理,就能得到,类似解析几何得到每个点的坐标一样,一步步就能得到每个边的长度,最后得到需要角度的一个方程,就是一般用塞瓦定理直接得到的方程。这一点难度都没有。

然后就是代数化简,得到答案。稍微练习几下,一般的题,不用画辅助线不用动笔,就看着图都能直接口算出来。

就算不是特殊数据,一个解方程就出来了。

这种题,很多人津津乐道于各种辅助线,每个不同数据的题就需要不同的辅助线,想很长时间。

这种代数通用解法,直接不用思考,不管什么数据直接就算。大多数时候的化简其实都很简单,特殊点的也就是那几种化简模式。

其实每个几何辅助线方法,都有相应的代数化简对应出来。

其实三角形的正弦定理,就是三角形的解析几何坐标体系,理解了解析几何精髓就这么简单。







CB9D3336-3C9B-4686-933A-29327B4C4005.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-9-18 15:58:34 | 显示全部楼层
yuange1975 发表于 2023-9-17 09:59
这些题就没难度,十几年前我就写了篇文章,解析几何精髓,给出了这类题的通用解法。

就算不知道塞瓦定理, ...

接11楼。记\(∠DCA=a,DC=\sin(12),AD=\sin(a)=DB\)
正弦定理:\(\frac{\sin(a)}{\sin(a+72)}=\frac{\sin(12)}{\sin(24)}\)  瞪一瞪眼就知道a=30。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-22 11:31 , Processed in 0.019602 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表