找回密码
 欢迎注册
查看: 41919|回复: 17

[讨论] 欧拉的天才巧证,我们可以挑战他吗?

[复制链接]
发表于 2009-7-14 09:43:54 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
我们知道,欧拉用很巧妙的代数方法分解了\(F_5=2^{2^5}=2^{32}+1=641*6700417\) 现描述如下: 记\(a=2^7=128, b=5\) 则:\( 2^4=3b+1=(a-b^3)b+1=ab-b^4+1\) \(\begin{split}2^{32}+1&=2^4a^4+1=(ab-b^4+1)a^4+1\cr\cr &=(1+ab)a^4+(1-a^4b^4)\cr\cr &=(1+ab)[a^4+(1+a^2b^2)(1-ab)]\cr\cr &=641*6700417\end{split}\) 现在我们利用计算机可以知道 \(F_6=2^{2^6}+1=2^{64}+1=274177*67280421310721\) 我们可以利用欧拉同样的方法分解出 \(F_6=2^{64}+1\) 吗?? (注:很显然,需要构造 \(a=2^8=256, b=\frac{274177-1}{256}=1071\)的代数式,如何找到一个关系式使\(a^8+1=(1+ab)M(a,b)\) \(M(a,b)\)是待求的多项式)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-14 10:15:17 | 显示全部楼层
老欧真是天才啊,感叹ing.......
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-14 10:34:34 | 显示全部楼层
欧拉——是我非常崇拜的多产数学家。 我们现在去做, 有点类似于先射箭再画靶, 但数与量如何巧妙替换, 要做到“自圆其说”、浑然天成, 也是很不容易的。 期待高手出现。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-14 11:19:49 | 显示全部楼层
巧则巧矣 但有多少通用性呢? 呵呵 我不认为有更好的方法
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-14 17:34:33 | 显示全部楼层
1# 数学星空 这法子要是总灵,欧拉还能把其他那些费尔马素数留给别人? 对于 $2^64 = (a*b-b^x+1)*a^x$ 型的,容易验证是没有整数解的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-14 18:27:02 | 显示全部楼层
641并不大,如果一个不相信费马猜想的人用试除法,不久也能够验算出来
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-7-14 18:28:45 | 显示全部楼层
呵呵,shshsh_0510 ,你也不要把欧拉想的这么神哟... 首先他没有确定是否为素数,再说2^64+1可不是小数,分解谈何容易... 当然,我们可以肯定既然是合数,肯定至少一种代数分解的方法,但2^64+1分解的形式不一定就是(a*b-b^x+1)*a^x呵,例如还有a^x*[((a*b)^(2m+1)+1-b^x]也是可以的,但还可能有其它的分解形式.... 这考察的就是我们的数学直觉和构造能力...

点评

http://bbs.emath.ac.cn/forum.php?mod=viewthread&tid=1619&fromuid=8916 一楼的\(F_5=\color{red}{2^{2^5}}=2^{32}+1=641∗6700417\)应改为\(F_5=\color{red}{2^{2^5}+1}=2^{32}+1=641∗6700417\)1   发表于 2014-8-1 13:14
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-16 16:11:25 | 显示全部楼层
欧拉应该不是神,但他做不出的,如果不是因为知识的历史局限性的原因的话,那我基本上不行
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-7-16 16:34:38 | 显示全部楼层
我想如果欧拉生活在我们的时代,那不知会有多少惊人的发现,数学会发展成什么状态... 尤其是像印度的天才数学奇才 拉马努金(1887~1920)Ramanujan,Srinivasa Aaiyangar 仿佛就是神的化身
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-17 08:26:08 | 显示全部楼层
我比较欣赏发现群论那个天才数学家伽罗华^^ 可惜为了一个女孩和别人决斗导致英年早逝啊……
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 20:14 , Processed in 0.025631 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表