- 注册时间
- 2008-11-26
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 149497
- 在线时间
- 小时
|
发表于 2019-8-19 14:01:58
|
显示全部楼层
很遗憾地告诉你,最短距离,并不代表相切!
- Clear["Global`*"];(*Clear all variables*)
- (*定义椭圆方程*)
- f=x^2/a^2+y[x]^2/b^2-1
- (*求解隐函数倒数,一阶倒数,两阶导数*)
- fx1=D[f,x]
- fx2=D[f,{x,2}]
- (*解出导数表达式,并且用xy来表达*)
- out1=Flatten@Solve[fx1==0,y'[x]]
- out2=Flatten@Solve[fx2==0,y''[x]]/.out1
- out=Flatten@Union[out1,out2]
- (*曲率的半径的平方的公式,完全用xy来表达*)
- R2=((1+y'[x]^2)^(3/2)/y''[x])^2/.out
- R2=FullSimplify[R2/.y[x]->y]
- R2=R2/.b^2*x^2+a^2*y^2->a^2*b^2
- a=3
- b=2
- Solve[{R2==(x-6/5)^2+y^2,f==0}/.y[x]->y,{x,y},Reals]
- N[%]
复制代码
曲率半径的平方的公式是
\[\frac{\left(a^4 y^2+b^4 x^2\right)^3}{a^8 b^8}\]
利用这个公式与点到距离的公式,以及点在椭圆上,联立方程组,得到下面的求解结果,
\[\left\{\left\{x\to \text{Root}\left[3125 \text{$\#$1}^6-151875 \text{$\#$1}^4+2824875 \text{$\#$1}^2-1574640 \text{$\#$1}-9716841\&,1\right],y\to -\sqrt{4-\frac{4}{9} \text{Root}\left[3125 \text{$\#$1}^6-151875 \text{$\#$1}^4+2824875 \text{$\#$1}^2-1574640 \text{$\#$1}-9716841\&,1\right]^2}\right\},\left\{x\to \text{Root}\left[3125 \text{$\#$1}^6-151875 \text{$\#$1}^4+2824875 \text{$\#$1}^2-1574640 \text{$\#$1}-9716841\&,1\right],y\to \sqrt{4-\frac{4}{9} \text{Root}\left[3125 \text{$\#$1}^6-151875 \text{$\#$1}^4+2824875 \text{$\#$1}^2-1574640 \text{$\#$1}-9716841\&,1\right]^2}\right\},\left\{x\to \text{Root}\left[3125 \text{$\#$1}^6-151875 \text{$\#$1}^4+2824875 \text{$\#$1}^2-1574640 \text{$\#$1}-9716841\&,2\right],y\to -\sqrt{4-\frac{4}{9} \text{Root}\left[3125 \text{$\#$1}^6-151875 \text{$\#$1}^4+2824875 \text{$\#$1}^2-1574640 \text{$\#$1}-9716841\&,2\right]^2}\right\},\left\{x\to \text{Root}\left[3125 \text{$\#$1}^6-151875 \text{$\#$1}^4+2824875 \text{$\#$1}^2-1574640 \text{$\#$1}-9716841\&,2\right],y\to \sqrt{4-\frac{4}{9} \text{Root}\left[3125 \text{$\#$1}^6-151875 \text{$\#$1}^4+2824875 \text{$\#$1}^2-1574640 \text{$\#$1}-9716841\&,2\right]^2}\right\}\right\}\]
数值化得到
\[\{\{x\to -1.70816,y\to -1.64414\},\{x\to -1.70816,y\to 1.64414\},\{x\to 2.75429,y\to -0.792709\},\{x\to 2.75429,y\to 0.792709\}\}\]
这个结果与
- NMinimize[{(x - 6/5)^2 + y^2, 4*x^2 + 9*y^2 == 36}, {x, y}]
复制代码
并不一样
这个结果是
\[\{2.848,\{x\to 2.16012,y\to 1.38787\}\}\]
所以最终结果来了!
利用椭圆的曲率半径公式,并不能得到最小距离! |
|