找回密码
 欢迎注册
楼主: kastin

[转载] 一道关于方程根中点范围的问题

[复制链接]
发表于 2019-9-7 21:29:22 | 显示全部楼层
8#竟然犯了两处错误
展开式说明$r_2^2-r_1^2=2(\sum_{t=3}^{\infty}{r_1^t-(-r_2)^t}/t)$
所以$r_2-r_1=2(\sum_{t=3}^{\infty}{r_1^t-(-r_2)^t}/{t(r_1-(-r_2))})=2(\sum_{t=3}^{\infty}{r_1^{t-1}-r_1^{t-2}r_2+...+(-r_2)^{t-1}}/t)<2(\sum_{t=1}^{\infty}{r_2^{2t}}/{2t+1})={\ln({1+r_2}/{1-r_2})-2r_2}/r_2$
由于$x_2+x_1=2+r_2-r_1$,而$m+\sqrt(m)=1+r_2-\ln(1+r_2)+\sqrt{1+r_2-\ln(1+r_2)}$,估算余项可知前者约$2/3r_2^2$,后者约$3/4r_2^2$,所以在$r_2$很小时不等式必然成立。
数值计算在$r_2\lt 0.16141968259452506460954163749391989939$不等式都成立,也就是在$m\lt 1.0117765614820538214429398700588724925$时不等式都成立。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-9-8 07:06:52 | 显示全部楼层
现在我们分析中间段的,下面表格利用数值计算(计算精度25位)证明了$1.008\le m \le 2.02$范围内不等式都成立
注意每行对应一小段区间,其中$x_1$最大值 加上 $x_2$最大值正好等于$m+\sqrt{m}$的最小值,所以验证了这个区间中不等式成立。
而其中每个区间$x_1$最大值在区间左端点取到,$x_2$最大值在区间右端点取到。
这个表格中结果,结合13#/14#的结果证明了不等式总是成立的
[
m区间 $x_1$最大值$x_2$最大值 $m+\sqrt{m}$最小值
[1.0080000000000000000000000000000000000,1.0081553313288650149075894243291361436]0.878785053267519670534628918871471074231.13320697857337098703917751207075391312.0119920318408906575738064309422249873
[1.0081553313288650149075894243291361436,1.0083150764574697443894215052982505391]0.877664826392924840778937150619955916431.13455989065032645600758918830912305602.0122247170432512967865263389290789725
[1.0083150764574697443894215052982505391,1.0084793996245196051232382633426262755]0.876524829893850910295406190315163477271.13593917797641964362802307311429518482.0124640078702705539234292634294586620
[1.0084793996245196051232382633426262755,1.0086484725983911009044274038828966256]0.875364558387057386183899413409550737761.13734559142614251233188733056261615962.0127101498131998985157867439721668974
[1.0086484725983911009044274038828966256,1.0088224750862724683714753044146556680]0.874183489800954052422605129224149774921.13877990979911768262041283817020047932.0129633996000717350430179673943502542
[1.0088224750862724683714753044146556680,1.0090015951689498980112691528347531560]0.872981084708967106015660550706436885301.14024294109607663857240519848632048472.0132240258050437445880657491927573700
[1.0090015951689498980112691528347531560,1.0091860297630566690011892122919343281]0.871756785632131949940872101990293884431.14173552386371002021772141426410042072.0134923094958419701585935162543943052
[1.0091860297630566690011892122919343281,1.0093759851127458424411463692944245644]0.870510016309333009746084809739858396561.14325852861266104827382931967042973262.0137685449219940580199141294102881292
[1.0093759851127458424411463692944245644,1.0095716773129028755344755616522282202]0.869240180933524411001376428995030421711.14481285931323106970267810741537802662.0140530402467554807040545364104084483
[1.0095716773129028755344755616522282202,1.0097733328661838169144404977339771883]0.867946663352174067683921222731937474241.14639945497368713634286301388533876792.0143461183258612040267842366172762421
[1.0097733328661838169144404977339771883,1.0099811892763489063042529393313761358]0.866628826230077460333221624731807668971.14801929130640736418672818635807921152.0146481175364848245199498110898868804
[1.0099811892763489063042529393313761358,1.0101954956805618465817136023530136862]0.865286010172585897725742442468992615261.14967338248747267255667532134919877122.0149593926600585702824177638181913865
[1.0101954956805618465817136023530136862,1.0104165135235433046139630393244945238]0.863917532807187125639330290325719222801.15136278301571566613815925543164654362.0152803158229027917774895457573657664
[1.0104165135235433046139630393244945238,1.0106445172767050512105146211551080073]0.862522687821263540286669201419811562981.15308858967767140326213287169126424142.0156112774989349435488020731110758044
[1.0106445172767050512105146211551080073,1.0108797952056504708329082353414035902]0.861100743953734754475682901510361966031.15485194362534332485768342839934869062.0159526875790780793333663299097106566
[1.0108797952056504708329082353414035902,1.0111226501897100568635897619588883199]0.859650943938166629830594932232976994721.15665403257420368520066105292291272792.0163049765123703150312559851558897227
[1.0111226501897100568635897619588883199,1.0113734005974892766567998041910128635]0.858172503394797916545218241678812423261.15849609312939468854382634544004656142.0166685965241926050890445871188589847
[1.0113734005974892766567998041910128635,1.0116323812227434048678347818452000670]0.856664609668798135402195072477513128321.16037941324868775767878519746647505682.0170440229174858930809802699439881851
[1.0116323812227434048678347818452000670,1.0118999442852624177335759715052913017]0.855126420611926116999069383309396039961.16230533485139783569974654102881231052.0174317554633239526988159243382083504
[1.0118999442852624177335759715052913017,1.0121764605018519509705047422948333362]0.853557063304607528072493116441847376501.16427525658314160869653776071313241502.0178323198877491367690308771549797915
[1.0121764605018519509705047422948333362,1.0124623202329371215137716535685031606]0.851955632715291645940392686710547609271.16629063674707769193489386161401355122.0182462694623693378752865483245611604
[1.0124623202329371215137716535685031606,1.0127579347107985439758985692685868916]0.850321190293782513571322924842226143311.16835299641307824048743008759442648442.0186741867068607540587530124366526277
[1.0127579347107985439758985692685868916,1.0130637373559783981915549025056639601]0.848652762495067397381750048508202675031.17046392271716070326291448963954967792.0191166852122281006446645381477523530
[1.0130637373559783981915549025056639601,1.0133801851889736498850150220056694398]0.846949339229986221652499894761440584731.17262507236446164066651006202834137322.0195744115944478623190099567897819579
[1.0133801851889736498850150220056694398,1.0137077603449687343223180423141649773]0.845209872238899493015610397528114731271.17483817535006835362713307601215284882.0200480475889678466427434735402675801
[1.0137077603449687343223180423141649773,1.0140469717000570006624905655248361843]0.843433273384319380664035614801035763141.17710503891314584401114046180397226142.0205383122974652246751760766050080246
[1.0140469717000570006624905655248361843,1.0143983566181654426607438271595963504]0.841618412858269427940516517294164773341.17942755174101435956163840777297422042.0210459645992837875021549250671389937
[1.0143983566181654426607438271595963504,1.0147624828287378857845957740418149130]0.839764117299933328893907284016625213211.18180768844115525172856498487100472962.0215718057410885806224722688876299428
[1.0147624828287378857845957740418149130,1.0151399504461558373013179842195034964]0.837869167818942973309684959685316174011.18424751430055971262245633773450414682.0221166821195026859321412974198203208
[1.0151399504461558373013179842195034964,1.0155313941428925020602304162497640887]0.835932297919441417587896148562716096671.18674919035339669852944368772215421182.0226814882728381161173398362848703084
[1.0155313941428925020602304162497640887,1.0159374854895138857396733222597635149]0.833952191319838696312711120502501987291.18931497877967454105142729932904149602.0232671700995132373641384198315434833
[1.0159374854895138857396733222597635149,1.0163589354758724240059413025554707128]0.831927479662958864346552425187056350961.19194724865941804653274189324532529982.0238747283223769108792943184323816508
[1.0163589354758724240059413025554707128,1.0167964972291954061533933298345248429]0.829856740111057114393029611077768546031.19464848210889315242524412038039448242.0245052222199502668182737314581630284
[1.0167964972291954061533933298345248429,1.0172509689462662069331047652845044565]0.827738492819968425081115476034582548461.19742128082759963012656454341051450132.0251597736475680552076800194450970498
[1.0172509689462662069331047652845044565,1.0177231970585461493164699584133091210]0.825571198286436621068702955210238895351.20026837308713552658259485500788486242.0258395713735721476512978102181237578
[1.0177231970585461493164699584133091210,1.0182140796509055703374624983585138635]0.823353254562468203768253977510402494831.20319262119563322697057332339287964652.0265458757581014307388273009032821414
[1.0182140796509055703374624983585138635,1.0187245701566431569114103404609561573]0.821082994330362747159032595973125214421.20619702947429612154255664849657525512.0272800238046588687015892444697004695
[1.0187245701566431569114103404609561573,1.0192556813536938160160964531779392004]0.818758681831895746984535121458085824551.20928475278564866417063835464237333692.0280434346175444111551734761004591615
[1.0192556813536938160160964531779392004,1.0198084896893806026128701504490923825]0.816378509644976190258959429286489227361.21245910565647494171430190078490857802.0288376153014511319732613300713978054
[1.0198084896893806026128701504490923825,1.0203841399637815859800148843988034350]0.813940595300976488470237094117132106781.21572357204208775590205243074284228602.0296641673430642443722895248599743928
[1.0203841399637815859800148843988034350,1.0209838504047870123617712618755913944]0.811442977735844775638206301151478964851.21908181578257005539763193692718593902.0305247935184148310358382380786649039
[1.0209838504047870123617712618755913944,1.0216089181712480650668543105377358770]0.808883613568068379041271147953177183341.22253769180599431073530223934306783002.0314213053740626897765733872962450133
[1.0216089181712480650668543105377358770,1.0222607253243019778727319845508808739]0.806260373196573725305452481501473042181.22609525813838681677642850833021777752.0323556313349605420818809898316908197
[1.0222607253243019778727319845508808739,1.0229407453110393816747252804485091080]0.803571036711735265492729438699938971351.22975878878539959682027511406954153262.0333298254971348623130045527694805039
[1.0229407453110393816747252804485091080,1.0236505500092032812275168974637413757]0.800813289612839757743574641281748766171.23353278755632236005619418523136873192.0343460771691621177997688265131174980
[1.0236505500092032812275168974637413757,1.0243918173866247530789236360952824932]0.797984718325630735875612903922015625251.23742200290725392884676361428999738012.0354067212328846647223765182120130053
[1.0243918173866247530789236360952824932,1.0251663398346637120142321565191013416]0.795082805513962692804939279852400688021.24143144388700327442006009783463564262.0365142494009659672249993776870363307
[1.0251663398346637120142321565191013416,1.0259760332410954793552597139587648448]0.792104925180150577792360845610508337241.24556639727665495575572906254266586912.0376713224568055335480899081531742063
[1.0259760332410954793552597139587648448,1.0268229468747337797066489654312573984]0.789048337549337073425959288031796241161.24983244602176622712194196103204653792.0388807835711033005479012490638427790
[1.0268229468747337797066489654312573984,1.0277092741616840471733538714187004844]0.785910183734152147860506318306738732661.25423548906492098970089011513967173492.0401456727990731375613964334464104676
[1.0277092741616840471733538714187004844,1.0286373644415615706902234705470056658]0.782687480177146642703010008076705651491.25878176269591044552304711423724494972.0414692428730570882260571223139506012
[1.0286373644415615706902234705470056658,1.0296097358013799925525756670624200281]0.779377112869990812867622095467571578811.26347786354720667031039884678548813382.0428549764171974831780209422530597126
[1.0296097358013799925525756670624200281,1.0306290890952195886629780145889481739]0.775975831350294018643478230459779454481.26833077337371155143346686767111402092.0443066047240055700769450981308934754
[1.0306290890952195886629780145889481739,1.0316983232693345894987286976768384997]0.772480242479186132167591953252833112981.27334788576807067076616449341938734472.0458281282472568029337564466722204576
[1.0316983232693345894987286976768384997,1.0328205521251786340966650566292107509]0.768886804005577602679363996206710283391.27853703497621293215964456222863572262.0474238389817905348390085584353460060
[1.0328205521251786340966650566292107509,1.0339991226670531146850902315054177338]0.765191817926367900144873573968674894081.28390652699228638704717145361933792242.0490983449186542871920450275880128165
[1.0339991226670531146850902315054177338,1.0352376351968627648258005421665602503]0.761391423655898637138900058707256015501.28946517312788294969757089584264910572.0508565967837815868364709545499051212
[1.0352376351968627648258005421665602503,1.0365399653359570808809833332014791715]0.757481591022760292788977975085499155231.29522232626745162973258907746653800982.0527039172902119225215670525520371650
[1.0365399653359570808809833332014791715,1.0379102881734184499543320468920358792]0.753458113117789164732966180476507124221.30118792004015918280320038460334893282.0546460331579483475361665650798560570
[1.0379102881734184499543320468920358792,1.0393531047616139854210619312271099928]0.749316599023881935447732579317992419301.30737251115822866906056235577258018882.0566891101821106045082949350905726081
[1.0393531047616139854210619312271099928,1.0408732712035554138031607314011671721]0.745052466466278300047623658229734810541.31378732519301851622858661890475720262.0588397916592968162762102771344920131
[1.0408732712035554138031607314011671721,1.0424760306028173264290187726763436190]0.740660934431410425616042235841674872751.32044430608282847584924472613601358382.0611052405142389014652869619776884566
[1.0424760306028173264290187726763436190,1.0441670481756636877936418999437852282]0.736137015813510832608406715733690915521.32735616969064179578196061530124627162.0634931855041526283903673310349371871
[1.0441670481756636877936418999437852282,1.0459524498568445164809057876894728148]0.731475510161155693512802415396970662281.33453646175571036469387961766194268062.0660119719168660582066820330589133428
[1.0459524498568445164809057876894728148,1.0478388647654664852331291010668375878]0.726670996611077966630164324679969823671.34199962060999427718915880742701167382.0686706172210722438193231321069814975
[1.0478388647654664852331291010668375878,1.0498334719356212974478810983300981185]0.721717827114227265042208762577339001821.34976104505885636604314246811662142432.0714788721730836310853512306939604261
[1.0498334719356212974478810983300981185,1.0519440517582636003540569835910154469]0.716610120079529362415053311238176499301.35783716785489121017742512316274410012.0744472879344205725924784344009205994
[1.0519440517582636003540569835910154469,1.0541790426263229998776733053193347721]0.711341754584492703469204693093533833511.36624553522405102964946224536767042432.0775872898085437331186669384612042578
[1.0541790426263229998776733053193347721,1.0565476033243194812926713868485457507]0.705906365329143575814160173292006668101.37500489293391642099909642920320845712.0809112582630599968132566024952151252
[1.0565476033243194812926713868485457507,1.0590596817568622221168895456222651010]0.700297338541201744590453723983590513871.38413527942450235994437398440709562052.0844326179657041045348277083906861344
[1.0590596817568622221168895456222651010,1.0617260906672799363593568720243567478]0.694507809076420968802906749951237527621.39365812655166432048052731420831011752.0881659356280852892834340641595476451
[1.0617260906672799363593568720243567478,1.0645585910580481305443912905137838314]0.688530658999123772907039514554323530821.40359636852102992269740951391558080202.0921270275201536956044490284699043328
[1.0645585910580481305443912905137838314,1.0675699840882496131939715886390479885]0.682358517974678532997611436388555165151.41397455961521252890103238934555570632.0963330775898910618986438257341108715
[1.0675699840882496131939715886390479885,1.0707742122893882889405277399232640618]0.675983765858514740187729449359465138501.42481900133732172460461842599202108002.1008027671958364647923478753514862185
[1.0707742122893882889405277399232640618,1.0741864710085137806789930380752224675]0.669398537925733460046413063509048564541.43615787960753526162780769273975749752.1055564175332687216742207562488060621
[1.0741864710085137806789930380752224675,1.0778233310554407708568393890398981795]0.662594733251862657816571669366388299801.44802141265433263013329527731284159292.1106161459061952879498669466792298927
[1.0778233310554407708568393890398981795,1.0817028735969847993445873307945486160]0.655564026829135861632765422598947424201.46044201023495383717913305653386855092.1160060370640896988118984791328159751
[1.0817028735969847993445873307945486160,1.0858448384030695296683213929354602798]0.648297886083965793509876043987925191691.47345444479713527852070590792086057292.1217523308811010720305819519087857646
[1.0858448384030695296683213929354602798,1.0902707866039864006917875135733655109]0.640787592549911696224405931765465899261.48709603515184297604617831154270070092.1278836277017546722705842433081666001
[1.0902707866039864006917875135733655109,1.0950042791607465023798607920418416169]0.633024269545905686284976553222654009611.50140684315938705569061326160241376352.1344311127052927419755898148250677731
[1.0950042791607465023798607920418416169,1.1000710722759490208987626282503614164]0.624998916810818125791767324112498096971.51642988383284283475695666591498920112.1414288006436609605487239900274872980
[1.1000710722759490208987626282503614164,1.1054993309741373554048168941824980272]0.616702453150951359222726883748801116811.53221134912599691582482582561386754812.1489138022769482750475527093626686649
[1.1054993309741373554048168941824980272,1.1113198620498863229328571682910547740]0.608125768264239124379012464202970991371.54880084548989978647165906193330650302.1569266137541389108506715261362774943
[1.1113198620498863229328571682910547740,1.1175663675087381436378456407328371523]0.599259785010177302061262428307199355131.56625164504330784444558685180462557542.1655114300534851465068492801118249305
[1.1175663675087381436378456407328371523,1.1242757194984819426697048570605309962]0.590095533492821424544942591148934354811.58462094989763866728585767401189039392.1747164833904600918308002651608247488
[1.1242757194984819426697048570605309962,1.1314882575319437835957780073971747926]0.580624238408863058079290727956888494781.60397016879557549533688214867740807752.1845944072044385534161728766342965722
[1.1314882575319437835957780073971747926,1.1392481085210732683706174661643535992]0.570837421175109066833241091239093373611.62436520475276072132648984299642582642.1952026259278697881597309342355192000
[1.1392481085210732683706174661643535992,1.1476035297573168096324217693703984575]0.560727018378514319525060896113616196261.64587675182289747140844807884524388592.2066037702014117909335089749588600822
[1.1476035297573168096324217693703984575,1.1566072744650491923717959517961661233]0.550285518073418356868791452323178550031.66858059842783809646503723610666243622.2188661165012564533338286884298409862
[1.1566072744650491923717959517961661233,1.1663169789022470964513391215252180257]0.539506115367980672926616886420248791931.69255793389791991458011407239954426192.2320640492659005875067309588197930538
[1.1663169789022470964513391215252180257,1.1767955691649109693716069894749147763]0.528382888575043089454039404471073016751.71789565394983918825683152160556680822.2462785425248822777108709260766398249
[1.1767955691649109693716069894749147763,1.1881116848502450634429737912655990699]0.516910996928773676498821015611489957721.74468665979170195047606494907112377522.2615976567204756269748859646826137329
[1.1881116848502450634429737912655990699,1.2003401155340529257276796141453046887]0.505086900461842743381776550160847211091.77303014439827175017247503592902578402.2781170448601144935542515860898729951
[1.2003401155340529257276796141453046887,1.2135622446138303233845631553480325355]0.492908602071200372565651945133596829651.80303185826658294569360260901845595592.2959404603377833182592545541520527855
[1.2135622446138303233845631553480325355,1.2278664934664841430506363559242137332]0.480375911046242069827367180477198987781.83480434568151076419039394445843567522.3151802567277528340177611249356346630
[1.2278664934664841430506363559242137332,1.2433487570918447393859515407464876824]0.467490726365936394275882113282084056501.86846714125093077442044494789341938892.3359578676168671686963270611755034454
[1.2433487570918447393859515407464876824,1.2601128205072184117761227780817282577]0.454257336871581061253505835065664861301.90414691529297293570202743515795880182.3584042521645539969555332702236236631
[1.2601128205072184117761227780817282577,1.2782707432015080826950912644965998229]0.440682733979523015259089844648186366131.94197755568310639711498190042500929812.3826602896626294123740717450731956643
[1.2782707432015080826950912644965998229,1.2979431970640633221197772750747269097]0.426776930919316946393932311947880192611.98210017313529905706648090776223398712.4088771040546160034604132197101141797
[1.2979431970640633221197772750747269097,1.3192597415296350868410926255402607507]0.412553280595449966872062813564477850922.02466301676724821375117359539190827272.4372162973626981806232364089563861236
[1.3192597415296350868410926255402607507,1.3423590184275970125727698293479425769]0.398028782132154328455569971022906381142.06982128737766843015594874902926304882.4678500695098227586115187200521694299
[1.3423590184275970125727698293479425769,1.3673888484349597349968443330501487534]0.383224364064120604983509174510967953022.11773683735278745982497682720311757142.5009612014169080648084860017140855245
[1.3673888484349597349968443330501487534,1.3945062113874206353222581396540901750]0.368165130115454469031206600161919371772.16857774872901291303345851084506675192.5367428788444673820646651110069861237
[1.3945062113874206353222581396540901750,1.4238770942975087747083227133322020871]0.352880551742676648521530954396706964692.22251778485661982189335546836914143302.5753983365992964704148864227658483977
[1.4238770942975087747083227133322020871,1.4556761940516545369517885980437403998]0.337404590323082863666178618204896478162.27973571647094328396765468721759102042.6171403067940261476338333054224874986
[1.4556761940516545369517885980437403998,1.4900864666503189448070843659717369924]0.321775731295986355577472929129509648122.34041452983141286307559057880623160042.6621902611273992186530635079357412485
[1.4900864666503189448070843659717369924,1.5272985216660854124419408735705344167]0.306036912971680460225079542736592938432.40474053285818454141202239783398488462.7107774458298650016371019405705778231
[1.5272985216660854124419408735705344167,1.5675098693287377642717478707985917142]0.290235334355395345591307738605641364832.47290238464426121645168886265612459812.7631377189996565620429966012617659629
[1.5675098693287377642717478707985917142,1.6109240381152757987450568095143693246]0.274422129381832849884709540519945821512.54509008392583603541028458273823977762.8195122133076688852949941232581855991
[1.6109240381152757987450568095143693246,1.6577495925068218033944594011627240537]0.258651899515099757326641727914250686292.62149396244157052043420495594272078942.8801458619566702777608466838569714757
[1.6577495925068218033944594011627240537,1.7081990930077299486802615521816794814]0.242982102695986724943423067736615337682.70230373881775985529062473426050182742.9452858415137465802340478019971171651
[1.7081990930077299486802615521816794814,1.7624880527121803550274714986817644640]0.227472303898042533058478284972370351192.78770769677732811713760022545242877853.0151800006753706501960785104247991297
[1.7624880527121803550274714986817644640,1.8208339555905209405274270523770800957]0.212183300680672871820135447892970117472.87789205715015027559732330910159918523.0900753578308231474174587569945693027
[1.8208339555905209405274270523770800957,1.8834554101274944343594086990932108253]0.197176145515817202546847353596115237982.97304061550484591521930802233382298283.1702167610206631177661553759299382208
[1.8834554101274944343594086990932108253,1.9505715169251174331777185359228927416]0.182511094589084467599353735849832247333.07333471558042950958024776593071623683.2558458101695139771796015017805484841
[1.9505715169251174331777185359228927416,2.0224015295571935097876197469495226549]0.168246519444293342219537195352695575993.17895362275137805017712513497862368623.3472001421956713923966623303313192622

点评

很简单,对于每个m区间的左端点,可以计算出对应的$x_1$的最大值和$m+\ln(m)$的最小值,由此计算$min{m+\ln(m)}-max{x_1}$给出了允许的最大的$x_2$,由此计算$x_2-\ln(x_2)$为这个区间m的右端点  发表于 2019-9-9 13:44
我想知道你这个表是怎么弄出来的?  发表于 2019-9-9 13:34
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-9-8 07:44:29 | 显示全部楼层
9#可以如下处理:
由于函数$\sqrt(m)-\ln({e*m}/{e-1})$导函数为$1/{2\sqrt{m}}-1/m$,所以唯一极值点为$m=4$,可以得出
$\sqrt(m)-\ln({e*m}/{e-1})>=2-\ln({4e}/{e-1})=0.15503049349302749014389211201631716198$
由此可以知道$0.15503049349302749014389211201631716198+m+\ln({e*m}/{e-1})\le m+\sqrt{m}$恒成立
也就是已经严格证明在$m\gt 2.0191639426920814670741038938393492242$时不等式成立
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-9-8 07:58:10 | 显示全部楼层
另外对于11#中,我们可以先证明$\ln(1+x)\lt x-x^2/2+x^3/3$
所以我们有$m=1+r_2-\ln(1+r_2)\gt 1+{r_2^2}/2-{r_2^3}/3$
另外可以证明在$0\lt r_2\lt 2.1407350339519857241589616899606612617$ 即方程 $9*x^3 + 96*x^2 + 112*x - 768$的根时,有
$\sqrt{1+{r_2^2}/2-{r_2^3}/3} \gt 1 + 1/4 r_2^2 - 1/6 r_2^3 - 1/32 r_2^4$
所以得出在$0\lt r_2\lt 2.1407350339519857241589616899606612617$时,$m+\sqrt{m} \gt 2 + 3/4*r_2^2 - 1/2*r_2^3 - 1/32*r_2^4$
另外一方面,我们可以比较函数$\ln({1+x}/{1-x})-2x$和${2x^3}/3+{4x^5}/5$.显然这两个函数在x=0都等于0
而两个函数差的导函数为$1/{1+x}+1/{1-x}-2-2x^2-4x^4={x^4(2x^2-1)}/{1-x^2}$,所以在$0<x<{\sqrt{2}}/2$时必然导函数之差小于0,所以必然有$\ln({1+x}/{1-x})-2x\le {2x^3}/3+{4x^5}/5$,所以${\ln({1+x}/{1-x})}/x-2\le {2x^2}/3+{4x^4}/5$
另外可以得出$0\lt x\lt 0.1359428875112682157 $即方程$399*x^2 + 240*x - 40$的根时,${2x^2}/3+{4x^4}/5\lt  x^2/2 -x^3/3+ 1/4 x^2 - 1/6 x^3 - 1/32 x^4$,
由此得出$r_2$在这个范围时题目中不等式必然成立,对应的我们可以严格证明$1\lt m \lt 1.0084798435542516730003035811003272610$时不等式成立。
上面如果适当调整函数应该还可以找到更好的结果,但是最难的部分已经解决了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-9-8 08:47:27 | 显示全部楼层
猜想: 引入调和函数$H_m$,其定义参考http://mathworld.wolfram.com/HarmonicNumber.html
\(H_m = \gamma+\psi_0(m+1) . m\in \RR.    \gamma= 0.57721566490153286060651209008,  \psi_0(z) = \int_0^{\infty } (\frac{e^{-t}}{t}-\frac{e^{-z t}}{1-e^{-t}}) \, dt\) ,  当$m$是整数的时候,\(H_m = \sum_{k=1}^m\frac{1}{k}\)

已知方程 `x-\ln x=m\;(m\in \RR)` 有两不等实根 $x_1,x_2$,那么 $x_1+x_2\leq m+H_m$,  $H_m$是调和函数.

=============
可以发现,当$1<m<100$的时候,都是成立的,而且误差很小, 基本上可以确定$m+H_m$ 符合$x_1+x_2$的渐近规律 ,但是$m+\sqrt{m}$就飘的比较厉害了.
设$s=6.01008178667859777782319341185$, 其中 $1<m<s$的时候$1+H_m > \sqrt{m} $ , 而, $ m>s, H_m < \sqrt{m}$
  1. Table[{N[m],ans=Quiet[FindRoot[x-Log[x]==m,{x,{1/m,m}},WorkingPrecision->30]][[1,2]];ans//Chop,{N[m+Sqrt[m]],N[m+Sqrt[m]]-Total[Chop[ans]]},{N[m+HarmonicNumber[m]],N[m+HarmonicNumber[m]]-Total[Chop[ans]]}},{m,1,100,1}]//Column
复制代码


以下列出来的分别是m值,两个根的值, $m+\sqrt{m}$及其误差, $m+H_{m}$以及误差
  1. {1.,{1.00000000000000000000000000000,1.00000000000000000000000000000},{2.,0.},{2.,0.}}
  2. {2.,{0.158594339563039362153395341988,3.14619322062058258523706102852},{3.41421,0.109426},{3.5,0.195212}}
  3. {3.,{0.0524690974577148724098736112860,4.50524149579288336699862443214},{4.73205,0.17434},{4.83333,0.275623}}
  4. {4.,{0.0186606290886833424583352788495,5.74903138601270155099097984403},{6.,0.232308},{6.08333,0.315641}}
  5. {5.,{0.00678381135209697125412617571662,6.93684740722021872216431824129},{7.23607,0.292437},{7.28333,0.339702}}
  6. {6.,{0.00248491933514945299249607853514,8.09071740515548459615806517541},{8.44949,0.356287},{8.45,0.356798}}
  7. {7.,{0.000912714633504814127917301061536,9.22154230138681009493256216255},{9.64575,0.423296},{9.59286,0.370402}}
  8. {8.,{0.000335575219738042512501307128058,10.3355936303148423319991846184},{10.8284,0.492498},{10.7179,0.381928}}
  9. {9.,{0.000123425036886336175483768024472,11.4368396975756112254380665412},{12.,0.563037},{11.829,0.392005}}
  10. {10.,{0.0000454019910564829645753546702237,12.5279632019821742536902940417},{13.1623,0.634269},{12.929,0.40096}}
  11. {11.,{0.0000167019797440434829263998851584,13.6108686381498759384044381340},{14.3166,0.705739},{14.0199,0.408992}}
  12. {12.,{6.14425010502158477465211174917*10^-6,14.6869600271174058810499258462},{15.4641,0.777135},{15.1032,0.416245}}
  13. {13.,{2.26033451608740479504947909378*10^-6,15.7573040040643653551653533174},{16.6056,0.848245},{16.1801,0.422827}}
  14. {14.,{8.31529410544441007698836956412*10^-7,16.8227310080755478255166167768},{17.7417,0.918926},{17.2516,0.42883}}
  15. {15.,{3.05902414078098414577454207809*10^-7,17.8839009181026785098798459694},{18.873,0.989082},{18.3182,0.434328}}
  16. {16.,{1.12535187383426801539188724114*10^-7,18.9413472159544750825669544634},{20.,1.05865},{19.3807,0.439382}}
  17. {17.,{4.13993789017602045713198330598*10^-8,19.9955076298141846359677459668},{21.1231,1.1276},{20.4396,0.444045}}
  18. {18.,{1.52299799766649167594461909916*10^-8,21.0467459620529743314604324511},{22.2426,1.19589},{21.4951,0.448362}}
  19. {19.,{5.60279646892859563242738704595*10^-9,22.0953679935017959975536676865},{23.3589,1.26353},{22.5477,0.452372}}
  20. {20.,{2.06115362668691209637687553309*10^-9,23.1416333028010367067760849799},{24.4721,1.3305},{23.5977,0.456106}}
  21. {21.,{7.58256043366142214706130204112*10^-10,24.1857642040408054818753088686},{25.5826,1.39681},{24.6454,0.459594}}
  22. {22.,{2.78946809364703803217682267177*10^-10,25.2279526103449451144338495321},{26.6904,1.46246},{25.6908,0.462861}}
  23. {23.,{1.02618796327549520007192663362*10^-10,26.2683653778501610784960993621},{27.7958,1.52747},{26.7343,0.465926}}
  24. {24.,{0,27.3071485184050865096259974250},{28.899,1.59183},{27.776,0.46881}}
  25. {25.,{0,28.3444305578898612489009000639},{30.,1.65557},{28.816,0.471528}}
  26. {26.,{0,29.3803252408283779388406484395},{31.099,1.71869},{29.8544,0.474094}}
  27. {27.,{0,30.4149337288741634682380883803},{32.1962,1.78122},{30.8915,0.476523}}
  28. {28.,{0,31.4483464031685521958216883566},{33.2915,1.84316},{31.9272,0.478825}}
  29. {29.,{0,32.4806443535686381497178605099},{34.3852,1.90452},{32.9617,0.481009}}
  30. {30.,{0,33.5119006180780928715177040139},{35.4772,1.96532},{33.995,0.483087}}
  31. {31.,{0,34.5421812213127104690679389999},{36.5678,2.02558},{35.0272,0.485064}}
  32. {32.,{0,35.5715460500147984914500639544},{37.6569,2.08531},{36.0585,0.486949}}
  33. {33.,{0,36.6000495954739980370641547852},{38.7446,2.14451},{37.0888,0.488749}}
  34. {34.,{0,37.6277415865008364483248857877},{39.831,2.20321},{38.1182,0.490468}}
  35. {35.,{0,38.6546675318254898748650405654},{40.9161,2.26141},{39.1468,0.492114}}
  36. {36.,{0,39.6808691870934320136975965980},{42.,2.31913},{40.1746,0.49369}}
  37. {37.,{0,40.7063849587374473209499951865},{43.0828,2.37638},{41.2016,0.495201}}
  38. {38.,{0,41.7312502547280539759680007470},{44.1644,2.43316},{42.2279,0.496652}}
  39. {39.,{0,42.7553497575690141632778713466},{45.245,2.48965},{43.2535,0.498193}}
  40. {40.,{0,43.7791578586257387880687275326},{46.3246,2.5454},{44.2785,0.499385}}
  41. {41.,{0,44.5995795038245362930915736489},{47.4031,2.80354},{45.3029,0.703354}}
  42. {42.,{0,45.4967438001310664543099636824},{48.4807,2.984},{46.3267,0.829999}}
  43. {43.,{0,46.7961162955251146948984774252},{49.5574,2.76132},{47.35,0.553882}}
  44. {44.,{0,47.8451699089225101414645554405},{50.6332,2.78808},{48.3727,0.527556}}
  45. {45.,{0,48.8600924373465432530362428681},{51.7082,2.84811},{49.3949,0.534856}}
  46. {46.,{0,49.8613148461776324842926875542},{52.7823,2.92102},{50.4167,0.555372}}
  47. {47.,{0,50.7056297741095076452565598902},{53.8557,3.15002},{51.438,0.732334}}
  48. {48.,{0,51.3391788318981184359386733443},{54.9282,3.58902},{52.4588,1.11962}}
  49. {49.,{0,52.9098775041914210754064666916},{56.,3.09012},{53.4792,0.569328}}
  50. {50.,{0,53.1845251279361158497586600963},{57.0711,3.88654},{54.4992,1.31468}}
  51. {51.,{0,53.9332452617370366609879875363},{58.1414,4.20818},{55.5188,1.58557}}
  52. {52.,{0,55.8551348673660472965918671834},{59.2111,3.35597},{56.538,0.682909}}
  53. {53.,{0,56.8669942370912599550094134738},{60.2801,3.41312},{57.5569,0.689918}}
  54. {54.,{0,57.8495352485596177873545441924},{61.3485,3.49893},{58.5754,0.725895}}
  55. {55.,{0,58.9112252566066180742344513486},{62.4162,3.50497},{59.5936,0.682387}}
  56. {56.,{0,59.9961073702605660848635595106},{63.4833,3.48721},{60.6115,0.615362}}
  57. {57.,{0,60.9817328029806253308579834616},{64.5498,3.5681},{61.629,0.64728}}
  58. {58.,{0,61.5408759415676990066761053623},{65.6158,4.0749},{62.6463,1.10538}}
  59. {59.,{0,62.3483576894759733454431712732},{66.6811,4.33279},{63.6632,1.31485}}
  60. {60.,{0,63.3225165775533071355523395724},{67.746,4.42345},{64.6799,1.35735}}
  61. {61.,{0,64.0789642741201041088652487002},{68.8102,4.73129},{65.6963,1.6173}}
  62. {62.,{0,65.9518778846238405292568639165},{69.874,3.92213},{66.7124,0.760515}}
  63. {63.,{0,65.7834536511415613783685803900},{70.9373,5.1538},{67.7283,1.94481}}
  64. {64.,{0,67.2032023724295600385430485234},{72.,4.7968},{68.7439,1.54069}}
  65. {65.,{0,67.9302886471665304567959805560},{73.0623,5.13197},{69.7593,1.82899}}
  66. {66.,{0,69.0876150298908514335940987754},{74.124,5.03642},{70.7744,1.68681}}
  67. {67.,{0,70.3169929916471826795686323316},{75.1854,4.86836},{71.7894,1.47236}}
  68. {68.,{0,71.6900456393751970972505674386},{76.2462,4.55617},{72.8041,1.11401}}
  69. {69.,{0,72.6860880056202218715368633554},{77.3066,4.62054},{73.8186,1.13246}}
  70. {70.,{0,73.9983170587182595602771166370},{78.3666,4.36828},{74.8328,0.83452}}
  71. {71.,{0,75.0055673582541923530930772803},{79.4261,4.42058},{75.8469,0.841354}}
  72. {72.,{0,75.5943461344851391671495875716},{80.4853,4.89094},{76.8608,1.26646}}
  73. {73.,{0,76.5702499892067110834133113702},{81.544,4.97375},{77.8745,1.30426}}
  74. {74.,{0,77.9019145423177143229449081328},{82.6023,4.70041},{78.888,0.986108}}
  75. {75.,{0,78.3676574149429980024274517725},{83.6603,5.2926},{79.9014,1.5337}}
  76. {76.,{0,79.6761867741934738707388891200},{84.7178,5.04161},{80.9145,1.23833}}
  77. {77.,{0,80.2698236776095237973599079492},{85.775,5.50514},{81.9275,1.65768}}
  78. {78.,{0,81.5187116011553130273385354311},{86.8318,5.31305},{82.9403,1.42161}}
  79. {79.,{0,82.9988678141154295953974687994},{87.8882,4.88933},{83.953,0.954111}}
  80. {80.,{0,83.4719453939324413078567993080},{88.9443,5.47233},{84.9655,1.49353}}
  81. {81.,{0,84.2389206391529580780410397249},{90.,5.76108},{85.9778,1.7389}}
  82. {82.,{0,85.4479658645239622979664073430},{91.0554,5.60742},{86.99,1.54205}}
  83. {83.,{0,86.1236304911857521487061841870},{92.1104,5.9868},{88.0021,1.87844}}
  84. {84.,{0,87.5381770958650537843107524184},{93.1652,5.62697},{89.014,1.4758}}
  85. {85.,{0,88.2472916787974117349238114878},{94.2195,5.97225},{90.0257,1.77845}}
  86. {86.,{0,89.9914835595963708195866657453},{95.2736,5.28213},{91.0374,1.04588}}
  87. {87.,{0,90.3104715997524663080583325449},{96.3274,6.01691},{92.0489,1.73839}}
  88. {88.,{0,90.8263184794631575127487178183},{97.3808,6.55451},{93.0602,2.23391}}
  89. {89.,{0,91.8086557616284687420476699804},{98.434,6.62533},{94.0715,2.2628}}
  90. {90.,{0,93.5042397852714894205856467580},{99.4868,5.98259},{95.0826,1.57833}}
  91. {91.,{0,94.2110830909479865665152985808},{100.539,6.32831},{96.0936,1.88248}}
  92. {92.,{0,94.5569159570246292858822982578},{101.592,7.03475},{97.1044,2.54751}}
  93. {93.,{0,95.1278663893876580997722442952},{102.644,7.51578},{98.1152,2.98732}}
  94. {94.,{0,95.8023426919579508107584280934},{103.695,7.89302},{99.1258,3.32348}}
  95. {95.,{0,96.4072449831666495508727788902},{104.747,8.33955},{100.136,3.7291}}
  96. {96.,{0,97.1380655020182591998681057118},{105.798,8.65989},{101.147,4.0087}}
  97. {97.,{0,98.0882842349596329538313205083},{106.849,8.76057},{102.157,4.06879}}
  98. {98.,{0,99.2082284047973034870934385368},{107.899,8.69127},{103.167,3.95905}}
  99. {99.,{0,100.153500477390731134516011773},{108.95,8.79637},{104.177,4.02388}}
  100. {100.,{0,101.309540602968693035342400057},{110.,8.69046},{105.187,3.87784}}
复制代码


毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-9-8 08:52:45 来自手机 | 显示全部楼层
你这个在m不是整数时如何定义?

点评

答案是 $\frac{\pi ^2}{6}-1$  发表于 2019-9-8 10:13
我又重新编辑了,^O^  发表于 2019-9-8 10:09
公式17  发表于 2019-9-8 10:02
有道理, 我看了下,用的是 http://mathworld.wolfram.com/DigammaFunction.html定义  发表于 2019-9-8 10:02
H在m=1时导数是多少?  发表于 2019-9-8 09:50
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-9-8 10:16:40 来自手机 | 显示全部楼层
H_m的上述定义在m=1处导数略大于sqrt(m),所以在m=1处估计的没有sqrt(m)好。sqrt(m)在m=1的导数为1/2. 合法的最佳估计必然导数不小于1/3

点评

是的,在m<6.01008的时候,没有$\sqrt{m}$好  发表于 2019-9-8 10:33
我又重新编辑了楼上的帖子,把 两个根的值,以及误差都打出来了  发表于 2019-9-8 10:30
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-9-8 12:50:44 来自手机 | 显示全部楼层
wayne的结论应该也不难验证,事实上对于任意c>0,对于充分大的m,两根和都必然小于m+ln(m)+c
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2019-9-8 14:25:19 | 显示全部楼层
换个思路,原方程可写为 `\int_1^{x_2}(1-\frac 1t)\dif t=x_2-\ln x_2=m , \int_1^{x_1}(1-\frac 1t)\dif t=x_1-\ln x_1=m.` 这样就能通过积分的方向单独估计 `x_1,\,x_2` 了。积分方面有一些数值公式和余项估计,或许是一个思考方向。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-9-8 16:05:59 | 显示全部楼层
对于wayne的结果,我们先找出关于$psi(x)$的不等式,有$\psi(x+1)\gt \ln(x)$
而在9#中我们有不等式$x_2\lt m+\ln(m)+0.45867514538708189102164364506732970188$
于是对于$x_1\lt 0.11854051951445096958486844501507272917$ wayne的不等式已经必然成立
而在另外一个端点,注意到m接近1时,digamma的导数大于sqrt{m}的导数,而且digamma的导函数和sqrt{m}的导函数都是严格递减的,所以我们可以digamma导数取值大于1/2的这段区间,这段区间内digamma{m}+Euler必然比sqrt{m}增加的快,从而严格大于它。于是可以找到在m=1附近一段区间的wayne不等式成立。
同样,中间区域可以类似上面方法数值计算验证
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-24 10:49 , Processed in 0.033066 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表