- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19886
- 在线时间
- 小时
|
发表于 2019-11-28 21:32:27
|
显示全部楼层
根据楼上5#的结论可以得到:
\(n=3,pq - p - q=0\)
\(n=4,p^2q^2 - p^2 - q^2=0\)
\(n=5,p^3q^3 + p^3q^2 + p^2q^3 - p^3q - 2p^2q^2 - pq^3 - p^3 + p^2q + pq^2 - q^3=0\)
\(n=6,3p^4q^4 - 2p^4q^2 - 2p^2q^4 - p^4 + 2p^2q^2 - q^4=0\)
\(n=7,p^6q^6 - 2p^6q^5 - 2p^5q^6 - p^6q^4 - 2p^5q^5 - p^4q^6 + 4p^6q^3 + 4p^3q^6 - p^6q^2 + 2p^4q^4 - p^2q^6 - 2p^6q + 2p^5q^2 + 2p^2q^5 - 2pq^6 + p^6 + 2p^5q - p^4q^2 - 4p^3q^3 - p^2q^4 + 2pq^5 + q^6=0\)
\(n=8,p^8q^8 - 4p^8q^6 - 4p^6q^8 + 6p^8q^4 - 4p^6q^6 + 6p^4q^8 - 4p^8q^2 + 4p^6q^4 + 4p^4q^6 - 4p^2q^8 + p^8 + 4p^6q^2 - 10p^4q^4 + 4p^2q^6 + q^8=0\)
\(n=9,p^9q^9 + 3p^9q^8 + 3p^8q^9 - 8p^9q^6 + 4p^8q^7 + 4p^7q^8 - 8p^6q^9 - 6p^9q^5 + 12p^7q^7 - 6p^5q^9 + 6p^9q^4 - 14p^8q^5 + 8p^7q^6 + 8p^6q^7 - 14p^5q^8 + 6p^4q^9 + 8p^9q^3 - 8p^7q^5 - 8p^5q^7 + 8p^3q^9 + 4p^8q^3 - 12p^7q^4 + 8p^6q^5 + 8p^5q^6 - 12p^4q^7 + 4p^3q^8 - 3p^9q - 4p^7q^3 + 14p^5q^5 - 4p^3q^7 - 3pq^9 - p^9 + 3p^8q - 8p^6q^3 + 6p^5q^4 + 6p^4q^5 - 8p^3q^6 + 3pq^8 - q^9=0\)
\(n=10,5p^{12}q^{12} - 10p^{12}q^{10} - 10p^{10}q^{12} - 9p^{12}q^8 + 34p^{10}q^{10} - 9p^8q^{12} + 36p^{12}q^6 - 36p^{10}q^8 - 36p^8q^{10} + 36p^6q^{12} - 29p^{12}q^4 + 4p^{10}q^6 + 50p^8q^8 + 4p^6q^{10} - 29p^4q^{12} + 6p^{12}q^2 + 14p^{10}q^4 - 20p^8q^6 - 20p^6q^8 + 14p^4q^{10} + 6p^2q^{12} + p^{12} - 6p^{10}q^2 + 15p^8q^4 - 20p^6q^6 + 15p^4q^8 - 6p^2q^{10} + q^{12}=0\)
\(n=11,p^{15}q^{15} - 3p^{15}q^{14} - 3p^{14}q^{15} - 3p^{15}q^{13} - 6p^{14}q^{14} - 3p^{13}q^{15} + 17p^{15}q^{12} - p^{14}q^{13} - p^{13}q^{14} + 17p^{12}q^{15} - 3p^{15}q^{11} + 4p^{14}q^{12} + 14p^{13}q^{13} + 4p^{12}q^{14} - 3p^{11}q^{15} - 39p^{15}q^{10} + 21p^{14}q^{11} + 2p^{13}q^{12} + 2p^{12}q^{13} + 21p^{11}q^{14} - 39p^{10}q^{15} + 25p^{15}q^9 + 38p^{14}q^{10} - 25p^{13}q^{11} - 76p^{12}q^{12} - 25p^{11}q^{13} + 38p^{10}q^{14} + 25p^9q^{15} + 45p^{15}q^8 - 17p^{14}q^9 + 5p^{13}q^{10} - 33p^{12}q^{11} - 33p^{11}q^{12} + 5p^{10}q^{13} - 17p^9q^{14} + 45p^8q^{15} - 45p^{15}q^7 - 72p^{14}q^8 + 20p^{13}q^9 + 72p^{12}q^{10} + 50p^{11}q^{11} + 72p^{10}q^{12} + 20p^9q^{13} - 72p^8q^{14} - 45p^7q^{15} - 25p^{15}q^6 - 17p^{14}q^7 - 20p^{13}q^8 + 28p^{12}q^9 + 34p^{11}q^{10} + 34p^{10}q^{11} + 28p^9q^{12} - 20p^8q^{13} - 17p^7q^{14} - 25p^6q^{15} + 39p^{15}q^5 + 38p^{14}q^6 - 5p^{13}q^7 + 72p^{12}q^8 - 34p^{11}q^9 - 220p^{10}q^{10} - 34p^9q^{11} + 72p^8q^{12} - 5p^7q^{13} + 38p^6q^{14} + 39p^5q^{15} + 3p^{15}q^4 + 21p^{14}q^5 + 25p^{13}q^6 - 33p^{12}q^7 - 50p^{11}q^8 + 34p^{10}q^9 + 34p^9q^{10} - 50p^8q^{11} - 33p^7q^{12} + 25p^6q^{13} + 21p^5q^{14} + 3p^4q^{15} - 17p^{15}q^3 + 4p^{14}q^4 - 2p^{13}q^5 - 76p^{12}q^6 + 33p^{11}q^7 + 72p^{10}q^8 - 28p^9q^9 + 72p^8q^{10} + 33p^7q^{11} - 76p^6q^{12} - 2p^5q^{13} + 4p^4q^{14} - 17p^3q^{15} + 3p^{15}q^2 - p^{14}q^3 - 14p^{13}q^4 + 2p^{12}q^5 + 25p^{11}q^6 + 5p^{10}q^7 - 20p^9q^8 - 20p^8q^9 + 5p^7q^{10} + 25p^6q^{11} + 2p^5q^{12} - 14p^4q^{13} - p^3q^{14} + 3p^2q^{15} + 3p^{15}q - 6p^{14}q^2 + p^{13}q^3 + 4p^{12}q^4 - 21p^{11}q^5 + 38p^{10}q^6 + 17p^9q^7 - 72p^8q^8 + 17p^7q^9 + 38p^6q^{10} - 21p^5q^{11} + 4p^4q^{12} + p^3q^{13} - 6p^2q^{14} + 3pq^{15} - p^{15} - 3p^{14}q + 3p^{13}q^2 + 17p^{12}q^3 + 3p^{11}q^4 - 39p^{10}q^5 - 25p^9q^6 + 45p^8q^7 + 45p^7q^8 - 25p^6q^9 - 39p^5q^{10} + 3p^4q^{11} + 17p^3q^{12} + 3p^2q^{13} - 3pq^{14} - q^{15}=0\)
进一步代入得到:
\(n=3,R^2 - 2Rr - d^2=0\)
\(n=4,R^4 - 2R^2d^2 - 2R^2r^2 + d^4 - 2d^2r^2=0\)
\(n=5,R^6 + 2R^5r - 3R^4d^2 - 4R^4r^2 - 4R^3d^2r + 3R^2d^4 + 4R^2d^2r^2 + 2Rd^4r - 8Rd^2r^3 - d^6=0\)
\(n=6,3R^8 - 12R^6d^2 - 4R^6r^2 + 18R^4d^4 + 4R^4d^2r^2 - 12R^2d^6 + 4R^2d^4r^2 - 16R^2d^2r^4 + 3d^8 - 4d^6r^2=0\)
\(n=7,R^{12} - 4R^{11}r - 6R^{10}d^2 - 4R^{10}r^2 + 20R^9d^2r + 8R^9r^3 + 15R^8d^4 + 16R^8d^2r^2 - 40R^7d^4r - 20R^6d^6 - 24R^6d^4r^2 - 16R^6d^2r^4 + 40R^5d^6r - 48R^5d^4r^3 - 32R^5d^2r^5 + 15R^4d^8 + 16R^4d^6r^2 + 32R^4d^4r^4 + 64R^4d^2r^6 - 20R^3d^8r + 64R^3d^6r^3 - 6R^2d^{10} - 4R^2d^8r^2 - 16R^2d^6r^4 + 4Rd^{10}r - 24Rd^8r^3 + 32Rd^6r^5 + d^{12}=0\)
\(n=8,R^{16} - 8R^{14}d^2 - 8R^{14}r^2 + 28R^{12}d^4 + 40R^{12}d^2r^2 + 8R^{12}r^4 - 56R^{10}d^6 - 72R^{10}d^4r^2 + 48R^{10}d^2r^4 + 70R^8d^8 + 40R^8d^6r^2 - 264R^8d^4r^4 - 128R^8d^2r^6 - 56R^6d^{10} + 40R^6d^8r^2 + 416R^6d^6r^4 + 128R^6d^4r^6 + 128R^6d^2r^8 + 28R^4d^{12} - 72R^4d^{10}r^2 - 264R^4d^8r^4 + 128R^4d^6r^6 - 8R^2d^{14} + 40R^2d^{12}r^2 + 48R^2d^{10}r^4 - 128R^2d^8r^6 + 128R^2d^6r^8 + d^{16} - 8d^{14}r^2 + 8d^{12}r^4=0\)
\(n=9,R^{18} + 6R^{17}r - 9R^{16}d^2 - 48R^{15}d^2r - 8R^{15}r^3 + 36R^{14}d^4 + 168R^{13}d^4r - 8R^{13}d^2r^3 - 84R^{12}d^6 - 96R^{12}d^2r^4 - 336R^{11}d^6r + 216R^{11}d^4r^3 + 32R^{11}d^2r^5 + 126R^{10}d^8 + 480R^{10}d^4r^4 + 256R^{10}d^2r^6 + 420R^9d^8r - 680R^9d^6r^3 + 32R^9d^4r^5 - 126R^8d^{10} - 960R^8d^6r^4 - 512R^8d^4r^6 - 256R^8d^2r^8 - 336R^7d^{10}r + 1000R^7d^8r^3 - 448R^7d^6r^5 + 128R^7d^4r^7 + 84R^6d^{12} + 960R^6d^8r^4 + 168R^5d^{12}r - 792R^5d^{10}r^3 + 832R^5d^8r^5 - 384R^5d^6r^7 - 36R^4d^{14} - 480R^4d^{10}r^4 + 512R^4d^8r^6 - 48R^3d^{14}r + 328R^3d^{12}r^3 - 608R^3d^{10}r^5 + 384R^3d^8r^7 - 512R^3d^6r^9 + 9R^2d^{16} + 96R^2d^{12}r^4 - 256R^2d^{10}r^6 + 256R^2d^8r^8 + 6Rd^{16}r - 56Rd^{14}r^3 + 160Rd^{12}r^5 - 128Rd^{10}r^7 - d^{18}=0\)
\(n=10,5R^{24} - 60R^{22}d^2 - 20R^{22}r^2 + 330R^{20}d^4 + 180R^{20}d^2r^2 + 16R^{20}r^4 - 1100R^{18}d^6 - 700R^{18}d^4r^2 - 304R^{18}d^2r^4 + 2475R^{16}d^8 + 1500R^{16}d^6r^2 + 1872R^{16}d^4r^4 + 1152R^{16}d^2r^6 - 3960R^{14}d^{10} - 1800R^{14}d^8r^2 - 5952R^{14}d^6r^4 - 5760R^{14}d^4r^6 - 1792R^{14}d^2r^8 + 4620R^{12}d^{12} + 840R^{12}d^{10}r^2 + 11424R^{12}d^8r^4 + 10368R^{12}d^6r^6 + 3328R^{12}d^4r^8 + 1024R^{12}d^2r^{10} - 3960R^{10}d^{14} + 840R^{10}d^{12}r^2 - 14112R^{10}d^{10}r^4 - 5760R^{10}d^8r^6 + 2816R^{10}d^6r^8 + 2475R^8d^{16} - 1800R^8d^{14}r^2 + 11424R^8d^{12}r^4 - 5760R^8d^{10}r^6 - 8704R^8d^8r^8 - 1024R^8d^6r^{10} - 1100R^6d^{18} + 1500R^6d^{16}r^2 - 5952R^6d^{14}r^4 + 10368R^6d^{12}r^6 + 2816R^6d^{10}r^8 - 1024R^6d^8r^{10} + 4096R^6d^6r^{12} + 330R^4d^{20} - 700R^4d^{18}r^2 + 1872R^4d^{16}r^4 - 5760R^4d^{14}r^6 + 3328R^4d^{12}r^8 - 60R^2d^{22} + 180R^2d^{20}r^2 - 304R^2d^{18}r^4 + 1152R^2d^{16}r^6 - 1792R^2d^{14}r^8 + 1024R^2d^{12}r^{10} + 5d^{24} - 20d^{22}r^2 + 16d^{20}r^4=0\)
\(n=11,R^{30} - 6R^{29}r - 15R^{28}d^2 - 12R^{28}r^2 + 84R^{27}d^2r + 32R^{27}r^3 + 105R^{26}d^4 + 156R^{26}d^2r^2 + 16R^{26}r^4 - 546R^{25}d^4r - 280R^{25}d^2r^3 - 32R^{25}r^5 - 455R^{24}d^6 - 936R^{24}d^4r^2 - 240R^{24}d^2r^4 + 2184R^{23}d^6r + 864R^{23}d^4r^3 - 384R^{23}d^2r^5 + 1365R^{22}d^8 + 3432R^{22}d^6r^2 + 1584R^{22}d^4r^4 + 1408R^{22}d^2r^6 - 6006R^{21}d^8r - 176R^{21}d^6r^3 + 5088R^{21}d^4r^5 + 1792R^{21}d^2r^7 - 3003R^{20}d^{10} - 8580R^{20}d^8r^2 - 6160R^{20}d^6r^4 - 12480R^{20}d^4r^6 - 4864R^{20}d^2r^8 + 12012R^{19}d^{10}r - 7040R^{19}d^8r^3 - 22720R^{19}d^6r^5 - 11264R^{19}d^4r^7 - 3072R^{19}d^2r^9 + 5005R^{18}d^{12} + 15444R^{18}d^{10}r^2 + 15840R^{18}d^8r^4 + 48960R^{18}d^6r^6 + 27648R^{18}d^4r^8 + 7168R^{18}d^2r^{10} - 18018R^{17}d^{12}r + 26136R^{17}d^{10}r^3 + 54720R^{17}d^8r^5 + 26496R^{17}d^6r^7 + 12288R^{17}d^4r^9 + 2048R^{17}d^2r^{11} - 6435R^{16}d^{14} - 20592R^{16}d^{12}r^2 - 28512R^{16}d^{10}r^4 - 111360R^{16}d^8r^6 - 57600R^{16}d^6r^8 - 20480R^{16}d^4r^{10} - 4096R^{16}d^2r^{12} + 20592R^{15}d^{14}r - 52800R^{15}d^{12}r^3 - 78336R^{15}d^{10}r^5 - 21504R^{15}d^8r^7 - 12288R^{15}d^6r^9 + 6435R^{14}d^{16} + 20592R^{14}d^{14}r^2 + 36960R^{14}d^{12}r^4 + 161280R^{14}d^{10}r^6 + 37632R^{14}d^8r^8 + 12288R^{14}d^6r^{10} - 18018R^{13}d^{16}r + 70752R^{13}d^{14}r^3 + 63168R^{13}d^{12}r^5 - 21504R^{13}d^{10}r^7 - 12800R^{13}d^8r^9 - 24576R^{13}d^6r^{11} - 5005R^{12}d^{18} - 15444R^{12}d^{16}r^2 - 34848R^{12}d^{14}r^4 - 153216R^{12}d^{12}r^6 + 48384R^{12}d^{10}r^8 - 5120R^{12}d^8r^{10} - 4096R^{12}d^6r^{12} + 12012R^{11}d^{18}r - 66528R^{11}d^{16}r^3 - 14976R^{11}d^{14}r^5 + 64512R^{11}d^{12}r^7 + 33792R^{11}d^{10}r^9 + 57344R^{11}d^8r^{11} + 16384R^{11}d^6r^{13} + 3003R^{10}d^{20} + 8580R^{10}d^{18}r^2 + 23760R^{10}d^{16}r^4 + 94080R^{10}d^{14}r^6 - 112896R^{10}d^{12}r^8 + 56320R^{10}d^{10}r^{10} + 28672R^{10}d^8r^{12} + 16384R^{10}d^6r^{14} - 6006R^9d^{20}r + 44440R^9d^{18}r^3 - 24480R^9d^{16}r^5 - 59136R^9d^{14}r^7 - 19968R^9d^{12}r^9 - 55296R^9d^{10}r^{11} - 24576R^9d^8r^{13} - 32768R^9d^6r^{15} - 1365R^8d^{22} - 3432R^8d^{20}r^2 - 11440R^8d^{18}r^4 - 34560R^8d^{16}r^6 + 91392R^8d^{14}r^8 - 104448R^8d^{12}r^{10} + 2184R^7d^{22}r - 20768R^7d^{20}r^3 + 30080R^7d^{18}r^5 + 21504R^7d^{16}r^7 - 2048R^7d^{14}r^9 + 24576R^7d^{12}r^{11} + 455R^6d^{24} + 936R^6d^{22}r^2 + 3696R^6d^{20}r^4 + 5760R^6d^{18}r^6 - 34560R^6d^{16}r^8 + 71680R^6d^{14}r^{10} - 45056R^6d^{12}r^{12} - 546R^5d^{24}r + 6480R^5d^{22}r^3 - 16032R^5d^{20}r^5 + 2304R^5d^{18}r^7 + 4608R^5d^{16}r^9 - 4096R^5d^{14}r^{11} + 8192R^5d^{12}r^{13} - 105R^4d^{26} - 156R^4d^{24}r^2 - 720R^4d^{22}r^4 + 320R^4d^{20}r^6 + 4608R^4d^{18}r^8 - 17408R^4d^{16}r^{10} + 24576R^4d^{14}r^{12} - 16384R^4d^{12}r^{14} + 84R^3d^{26}r - 1216R^3d^{24}r^3 + 4416R^3d^{22}r^5 - 4096R^3d^{20}r^7 + 15R^2d^{28} + 12R^2d^{26}r^2 + 64R^2d^{24}r^4 - 192R^2d^{22}r^6 + 256R^2d^{20}r^8 - 6Rd^{28}r + 104Rd^{26}r^3 - 512Rd^{24}r^5 + 896Rd^{22}r^7 - 512Rd^{20}r^9 - d^{30}=0\) |
|