- 注册时间
 - 2009-6-9
 
- 最后登录
 - 1970-1-1
 
- 威望
 -  星
 
- 金币
 -  枚
 
- 贡献
 -  分
 
- 经验
 -  点
 
- 鲜花
 -  朵
 
- 魅力
 -  点
 
- 上传
 -  次
 
- 下载
 -  次
 
- 积分
 - 19993
 
- 在线时间
 -  小时
 
 
 
 
 
 
 | 
 
 楼主 |
发表于 2014-4-28 22:28:51
|
显示全部楼层
 
 
 
若8#所列的关系式正确,我们可以得到双椭圆计算公式 
 
外切于椭圆\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\),内接于椭圆\(\frac{(x-x_0)^2}{m^2}+\frac{(y-y_1)}{n^2}=1\) 
 
\(n=3\)时 
 
\((a^2n^2+b^2m^2+m^2n^2-m^2y_0^2-n^2x_0^2)^2+4(-a^2b^2-a^2n^2+a^2y_0^2-b^2m^2+b^2x_0^2)n^2m^2=0\)  
 
\(n=4\)时 
 
\(-(a^2n^2+b^2m^2+m^2n^2-m^2y_0^2-n^2x_0^2)^3-4n^2m^2(-a^2b^2-a^2n^2+a^2y_0^2-b^2m^2+b^2x_0^2)(a^2n^2+b^2m^2+m^2n^2-m^2y_0^2-n^2x_0^2)-8a^2b^2n^4m^4=0\) 
 
 
\(n=5\)时 
 
\((a^2n^2+b^2m^2+m^2n^2-m^2y_0^2-n^2x_0^2)^6+12n^2m^2(a^2n^2+b^2m^2+m^2n^2-m^2y_0^2-n^2x_0^2)^4(-a^2b^2-a^2n^2+a^2y_0^2-b^2m^2+b^2x_0^2)-32n^4m^4(a^2n^2+b^2m^2+m^2n^2-m^2y_0^2-n^2x_0^2)^3a^2b^2+48n^4m^4(a^2n^2+b^2m^2+m^2n^2-m^2y_0^2-n^2x_0^2)^2(-a^2b^2-a^2n^2+a^2y_0^2-b^2m^2+b^2x_0^2)^2-128(a^2n^2+b^2m^2+m^2n^2-m^2y_0^2-n^2x_0^2)(-a^2b^2-a^2n^2+a^2y_0^2-b^2m^2+b^2x_0^2)a^2b^2m^6n^6+64m^6n^6(-a^2b^2-a^2n^2+a^2y_0^2-b^2m^2+b^2x_0^2)^3-256a^4b^4n^8m^8=0\) 
 
若\(x_0=0,y_0=0\),则有下面结论: 
 
 
\(n=3\)时 
 
\((a^2n^2+b^2m^2+m^2n^2)^2+4(-a^2b^2-a^2n^2-b^2m^2)n^2m^2=0\)  
 
\(n=4\)时 
 
\(-(a^2n^2+b^2m^2+m^2n^2)^3-4n^2m^2(-a^2b^2-a^2n^2-b^2m^2)(a^2n^2+b^2m^2+m^2n^2)-8a^2b^2n^4m^4=0\)  
 
\(n=5\)时 
 
\((a^2n^2+b^2m^2+m^2n^2)^6+12n^2m^2(a^2n^2+b^2m^2+m^2n^2)^4(-a^2b^2-a^2n^2-b^2m^2)-32n^4m^4(a^2n^2+b^2m^2+m^2n^2)^3a^2b^2+48n^4m^4(a^2n^2+b^2m^2+m^2n^2)^2(-a^2b^2-a^2n^2-b^2m^2)^2-128(a^2n^2+b^2m^2+m^2n^2)(-a^2b^2-a^2n^2-b^2m^2)a^2b^2m^6n^6+64m^6n^6(-a^2b^2-a^2n^2-b^2m^2)^3-256a^4b^4n^8m^8=0\) 
 
谁有兴趣验证一下上面的公式是否正确? 
 
 
 |   
 
 
 
 |