(1)1+x/2!+x2/4!+x3/6!+……+xn/(2n)!=0
(2)1+x/3!+x2/5!+x3/7!+……+xn/(2n+1)!=0
高斯代数基本定理: 复域内一元n次方程有n个复根. 算复根没啥子劲,我们推高一下楼主的问题的难度.
容易用软件验证,两个方程 大概有$n/4$个实根,${3n}/4$个虚根. 比如$n=1000$的时候,第一个方程有$236$个实根,第二个方程有$234$个实根.
更一般的结论是, 当n为偶数的时候, 第一个方程的实根个数 比第二个方程的实根个数 多两个. 当n为奇数的时候, 第一个方程的实根个数 跟 第二个方程的实根个数 相等.
这两个猜想 有人能证明或者正否吗?
下面给的数据是n=1-500的时候,实根的个数, 按8取模分成8组,发现,规律非常明显. 基本上都是线性递增,方差为2,偶尔会在一两处重复.
- {{1,1},{9,3},{17,5},{25,7},{33,9},{41,11},{49,13},{57,15},{65,17},{73,19},{81,19},{89,21},{97,23},{105,25},{113,27},{121,29},{129,31},{137,33},{145,35},{153,37},{161,39},{169,41},{177,43},{185,45},{193,47},{201,49},{209,49},{217,51},{225,53},{233,55},{241,57},{249,59},{257,61},{265,63},{273,65},{281,67},{289,69},{297,71},{305,73},{313,75},{321,77},{329,79},{337,79},{345,81},{353,83},{361,85},{369,87},{377,89},{385,91},{393,93},{401,95},{409,97},{417,99},{425,101},{433,103},{441,105},{449,107},{457,109},{465,109},{473,111},{481,113},{489,115}}
- {{2,2},{10,4},{18,6},{26,6},{34,8},{42,10},{50,12},{58,14},{66,16},{74,18},{82,20},{90,22},{98,24},{106,26},{114,28},{122,30},{130,32},{138,34},{146,36},{154,38},{162,38},{170,40},{178,42},{186,44},{194,46},{202,48},{210,50},{218,52},{226,54},{234,56},{242,58},{250,60},{258,62},{266,64},{274,66},{282,68},{290,68},{298,70},{306,72},{314,74},{322,76},{330,78},{338,80},{346,82},{354,84},{362,86},{370,88},{378,90},{386,92},{394,94},{402,96},{410,98},{418,98},{426,100},{434,102},{442,104},{450,106},{458,108},{466,110},{474,112},{482,114},{490,116}}
- {{3,1},{11,3},{19,5},{27,7},{35,9},{43,11},{51,13},{59,15},{67,17},{75,19},{83,21},{91,23},{99,25},{107,25},{115,27},{123,29},{131,31},{139,33},{147,35},{155,37},{163,39},{171,41},{179,43},{187,45},{195,47},{203,49},{211,51},{219,53},{227,55},{235,57},{243,57},{251,59},{259,61},{267,63},{275,65},{283,67},{291,69},{299,71},{307,73},{315,75},{323,77},{331,79},{339,81},{347,83},{355,85},{363,87},{371,87},{379,89},{387,91},{395,93},{403,95},{411,97},{419,99},{427,101},{435,103},{443,105},{451,107},{459,109},{467,111},{475,113},{483,115},{491,117}}
- {{4,2},{12,4},{20,6},{28,8},{36,10},{44,12},{52,14},{60,14},{68,16},{76,18},{84,20},{92,22},{100,24},{108,26},{116,28},{124,30},{132,32},{140,34},{148,36},{156,38},{164,40},{172,42},{180,44},{188,44},{196,46},{204,48},{212,50},{220,52},{228,54},{236,56},{244,58},{252,60},{260,62},{268,64},{276,66},{284,68},{292,70},{300,72},{308,74},{316,76},{324,76},{332,78},{340,80},{348,82},{356,84},{364,86},{372,88},{380,90},{388,92},{396,94},{404,96},{412,98},{420,100},{428,102},{436,104},{444,106},{452,106},{460,108},{468,110},{476,112},{484,114},{492,116}}
- {{5,1},{13,3},{21,5},{29,7},{37,9},{45,11},{53,13},{61,15},{69,17},{77,19},{85,21},{93,23},{101,25},{109,27},{117,29},{125,31},{133,33},{141,33},{149,35},{157,37},{165,39},{173,41},{181,43},{189,45},{197,47},{205,49},{213,51},{221,53},{229,55},{237,57},{245,59},{253,61},{261,63},{269,63},{277,65},{285,67},{293,69},{301,71},{309,73},{317,75},{325,77},{333,79},{341,81},{349,83},{357,85},{365,87},{373,89},{381,91},{389,93},{397,93},{405,95},{413,97},{421,99},{429,101},{437,103},{445,105},{453,107},{461,109},{469,111},{477,113},{485,115},{493,117}}
- {{6,2},{14,4},{22,6},{30,8},{38,10},{46,12},{54,14},{62,16},{70,18},{78,20},{86,22},{94,22},{102,24},{110,26},{118,28},{126,30},{134,32},{142,34},{150,36},{158,38},{166,40},{174,42},{182,44},{190,46},{198,48},{206,50},{214,52},{222,52},{230,54},{238,56},{246,58},{254,60},{262,62},{270,64},{278,66},{286,68},{294,70},{302,72},{310,74},{318,76},{326,78},{334,80},{342,82},{350,82},{358,84},{366,86},{374,88},{382,90},{390,92},{398,94},{406,96},{414,98},{422,100},{430,102},{438,104},{446,106},{454,108},{462,110},{470,112},{478,112},{486,114},{494,116}}
- {{7,3},{15,5},{23,7},{31,9},{39,11},{47,11},{55,13},{63,15},{71,17},{79,19},{87,21},{95,23},{103,25},{111,27},{119,29},{127,31},{135,33},{143,35},{151,37},{159,39},{167,41},{175,41},{183,43},{191,45},{199,47},{207,49},{215,51},{223,53},{231,55},{239,57},{247,59},{255,61},{263,63},{271,65},{279,67},{287,69},{295,71},{303,71},{311,73},{319,75},{327,77},{335,79},{343,81},{351,83},{359,85},{367,87},{375,89},{383,91},{391,93},{399,95},{407,97},{415,99},{423,101},{431,101},{439,103},{447,105},{455,107},{463,109},{471,111},{479,113},{487,115},{495,117}}
- {{8,2},{16,4},{24,6},{32,8},{40,10},{48,12},{56,14},{64,16},{72,18},{80,20},{88,22},{96,24},{104,26},{112,28},{120,30},{128,30},{136,32},{144,34},{152,36},{160,38},{168,40},{176,42},{184,44},{192,46},{200,48},{208,50},{216,52},{224,54},{232,56},{240,58},{248,60},{256,60},{264,62},{272,64},{280,66},{288,68},{296,70},{304,72},{312,74},{320,76},{328,78},{336,80},{344,82},{352,84},{360,86},{368,88},{376,90},{384,90},{392,92},{400,94},{408,96},{416,98},{424,100},{432,102},{440,104},{448,106},{456,108},{464,110},{472,112},{480,114},{488,116},{496,118}}
复制代码 |