- 注册时间
- 2008-11-26
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 149497
- 在线时间
- 小时
|
楼主 |
发表于 2020-6-3 14:18:50
|
显示全部楼层
本帖最后由 mathematica 于 2020-6-3 14:27 编辑
- (*利用拉格朗日乘子法解决问题*)
- Clear["Global`*"];(*Clear all variables*)
- (*初始变量赋值*)
- {xa,ya}={1,3}
- {xb,yb}={0,0}
- {xc,yc}={4,0}
- {xd,yd}={4,2}
- (*利用斜率,得到135°这个约数条件,得到第一个约数条件*)
- k1=(yd-ye)/(xd-xe)
- k2=(ya-ye)/(xa-xe)
- (*只有分子是有用的*)
- cons=(k2-k1)/(1+k1*k2)+1//Together//Numerator
- (*目标函数*)
- f=MB+MC+ME+x1*((x-xb)^2+(y-yb)^2-MB^2)+x2*((x-xc)^2+(y-yc)^2-MC^2)+x3*((x-xe)^2+(y-ye)^2-ME^2)+x4*cons
- (*对所有的目标函数求导数,然后解方程组,只选出那些距离非负数的解,并且化简*)
- ans=Solve[D[f,{{xe,ye,x,y,MB,MC,ME,x1,x2,x3,x4}}]=={0,0,0,0,0,0,0,0,0,0,0},{xe,ye,x,y,MB,MC,ME,x1,x2,x3,x4}]//FullSimplify
- ans//Grid
- (*数值化求解结果*)
- ansN=N[ans,10]//Grid
- aaa=f/.ans//FullSimplify
- N[aaa,20]
复制代码
求解结果:
\[\begin{array}{ccccccccccc}
\text{xe}\to \sqrt{\frac{5}{73} \left(16 \sqrt{3}+29\right)}+3 & \text{ye}\to 2 \left(\sqrt{\frac{5}{73} \left(11-4 \sqrt{3}\right)}+2\right) & x\to \frac{2}{219} \left(147-80 \sqrt{3}\right) & y\to \frac{2}{219} \left(43 \sqrt{3}+192\right) & \text{MB}\to -4 \sqrt{\frac{1}{219} \left(95-8 \sqrt{3}\right)} & \text{MC}\to 4 \sqrt{\frac{1}{219} \left(72 \sqrt{3}+167\right)} & \text{ME}\to -\sqrt{\frac{2}{219} \left(72 \sqrt{3}+\sqrt{1095 \left(144 \sqrt{3}+2159\right)}+1627\right)} & \text{x1}\to -\frac{1}{88} \sqrt{3 \left(8 \sqrt{3}+95\right)} & \text{x2}\to \frac{1}{104} \sqrt{501-216 \sqrt{3}} & \text{x3}\to -\frac{\sqrt{\frac{3}{2} \left(-88308 \sqrt{3}-\sqrt{169134722625-66936841560 \sqrt{3}}+401743\right)}}{1832} & \text{x4}\to \frac{1}{2 \sqrt{5}} \\
\text{xe}\to \sqrt{\frac{5}{73} \left(16 \sqrt{3}+29\right)}+3 & \text{ye}\to 2 \left(\sqrt{\frac{5}{73} \left(11-4 \sqrt{3}\right)}+2\right) & x\to \frac{2}{219} \left(147-80 \sqrt{3}\right) & y\to \frac{2}{219} \left(43 \sqrt{3}+192\right) & \text{MB}\to 4 \sqrt{\frac{1}{219} \left(95-8 \sqrt{3}\right)} & \text{MC}\to -4 \sqrt{\frac{1}{219} \left(72 \sqrt{3}+167\right)} & \text{ME}\to \sqrt{\frac{2}{219} \left(72 \sqrt{3}+\sqrt{1095 \left(144 \sqrt{3}+2159\right)}+1627\right)} & \text{x1}\to \frac{1}{88} \sqrt{3 \left(8 \sqrt{3}+95\right)} & \text{x2}\to -\frac{1}{104} \sqrt{501-216 \sqrt{3}} & \text{x3}\to \frac{\sqrt{\frac{3}{2} \left(-88308 \sqrt{3}-\sqrt{169134722625-66936841560 \sqrt{3}}+401743\right)}}{1832} & \text{x4}\to -\frac{1}{2 \sqrt{5}} \\
\text{xe}\to \text{Root}\left[73 \text{$\#$1}^4-290 \text{$\#$1}^2+25\&,1\right]+3 & \text{ye}\to 4-2 \sqrt{\frac{5}{73} \left(11-4 \sqrt{3}\right)} & x\to \frac{2}{219} \left(147-80 \sqrt{3}\right) & y\to \frac{2}{219} \left(43 \sqrt{3}+192\right) & \text{MB}\to -4 \sqrt{\frac{1}{219} \left(95-8 \sqrt{3}\right)} & \text{MC}\to 4 \sqrt{\frac{1}{219} \left(72 \sqrt{3}+167\right)} & \text{ME}\to -\sqrt{\frac{2}{219} \left(72 \sqrt{3}-\sqrt{1095 \left(144 \sqrt{3}+2159\right)}+1627\right)} & \text{x1}\to -\frac{1}{88} \sqrt{3 \left(8 \sqrt{3}+95\right)} & \text{x2}\to \frac{1}{104} \sqrt{501-216 \sqrt{3}} & \text{x3}\to -\frac{\sqrt{\frac{3}{2} \left(-88308 \sqrt{3}+\sqrt{169134722625-66936841560 \sqrt{3}}+401743\right)}}{1832} & \text{x4}\to -\frac{1}{2 \sqrt{5}} \\
\text{xe}\to \text{Root}\left[73 \text{$\#$1}^4-290 \text{$\#$1}^2+25\&,1\right]+3 & \text{ye}\to 4-2 \sqrt{\frac{5}{73} \left(11-4 \sqrt{3}\right)} & x\to \frac{2}{219} \left(147-80 \sqrt{3}\right) & y\to \frac{2}{219} \left(43 \sqrt{3}+192\right) & \text{MB}\to 4 \sqrt{\frac{1}{219} \left(95-8 \sqrt{3}\right)} & \text{MC}\to -4 \sqrt{\frac{1}{219} \left(72 \sqrt{3}+167\right)} & \text{ME}\to \sqrt{\frac{2}{219} \left(72 \sqrt{3}-\sqrt{1095 \left(144 \sqrt{3}+2159\right)}+1627\right)} & \text{x1}\to \frac{1}{88} \sqrt{3 \left(8 \sqrt{3}+95\right)} & \text{x2}\to -\frac{1}{104} \sqrt{501-216 \sqrt{3}} & \text{x3}\to \frac{\sqrt{\frac{3}{2} \left(-88308 \sqrt{3}+\sqrt{169134722625-66936841560 \sqrt{3}}+401743\right)}}{1832} & \text{x4}\to \frac{1}{2 \sqrt{5}} \\
\text{xe}\to \sqrt{\frac{5}{73} \left(29-16 \sqrt{3}\right)}+3 & \text{ye}\to 2 \left(\sqrt{\frac{5}{73} \left(4 \sqrt{3}+11\right)}+2\right) & x\to \frac{2}{219} \left(80 \sqrt{3}+147\right) & y\to \frac{1}{219} \left(384-86 \sqrt{3}\right) & \text{MB}\to -4 \sqrt{\frac{1}{219} \left(8 \sqrt{3}+95\right)} & \text{MC}\to -4 \sqrt{\frac{1}{219} \left(167-72 \sqrt{3}\right)} & \text{ME}\to -\sqrt{\frac{2}{219} \left(-72 \sqrt{3}+\sqrt{1095 \left(2159-144 \sqrt{3}\right)}+1627\right)} & \text{x1}\to -\frac{1}{88} \sqrt{3 \left(95-8 \sqrt{3}\right)} & \text{x2}\to -\frac{1}{104} \sqrt{216 \sqrt{3}+501} & \text{x3}\to -\frac{\sqrt{\frac{3}{2} \left(88308 \sqrt{3}-\sqrt{66936841560 \sqrt{3}+169134722625}+401743\right)}}{1832} & \text{x4}\to \frac{1}{2 \sqrt{5}} \\
\text{xe}\to \sqrt{\frac{5}{73} \left(29-16 \sqrt{3}\right)}+3 & \text{ye}\to 2 \left(\sqrt{\frac{5}{73} \left(4 \sqrt{3}+11\right)}+2\right) & x\to \frac{2}{219} \left(80 \sqrt{3}+147\right) & y\to \frac{1}{219} \left(384-86 \sqrt{3}\right) & \text{MB}\to 4 \sqrt{\frac{1}{219} \left(8 \sqrt{3}+95\right)} & \text{MC}\to 4 \sqrt{\frac{1}{219} \left(167-72 \sqrt{3}\right)} & \text{ME}\to \sqrt{\frac{2}{219} \left(-72 \sqrt{3}+\sqrt{1095 \left(2159-144 \sqrt{3}\right)}+1627\right)} & \text{x1}\to \frac{1}{88} \sqrt{3 \left(95-8 \sqrt{3}\right)} & \text{x2}\to \frac{1}{104} \sqrt{216 \sqrt{3}+501} & \text{x3}\to \frac{\sqrt{\frac{3}{2} \left(88308 \sqrt{3}-\sqrt{66936841560 \sqrt{3}+169134722625}+401743\right)}}{1832} & \text{x4}\to -\frac{1}{2 \sqrt{5}} \\
\text{xe}\to \text{Root}\left[73 \text{$\#$1}^4-290 \text{$\#$1}^2+25\&,2\right]+3 & \text{ye}\to 4-2 \sqrt{\frac{5}{73} \left(4 \sqrt{3}+11\right)} & x\to \frac{2}{219} \left(80 \sqrt{3}+147\right) & y\to \frac{1}{219} \left(384-86 \sqrt{3}\right) & \text{MB}\to -4 \sqrt{\frac{1}{219} \left(8 \sqrt{3}+95\right)} & \text{MC}\to -4 \sqrt{\frac{1}{219} \left(167-72 \sqrt{3}\right)} & \text{ME}\to -\sqrt{\frac{2}{219} \left(-72 \sqrt{3}-\sqrt{1095 \left(2159-144 \sqrt{3}\right)}+1627\right)} & \text{x1}\to -\frac{1}{88} \sqrt{3 \left(95-8 \sqrt{3}\right)} & \text{x2}\to -\frac{1}{104} \sqrt{216 \sqrt{3}+501} & \text{x3}\to -\frac{\sqrt{\frac{3}{2} \left(88308 \sqrt{3}+\sqrt{66936841560 \sqrt{3}+169134722625}+401743\right)}}{1832} & \text{x4}\to -\frac{1}{2 \sqrt{5}} \\
\text{xe}\to \text{Root}\left[73 \text{$\#$1}^4-290 \text{$\#$1}^2+25\&,2\right]+3 & \text{ye}\to 4-2 \sqrt{\frac{5}{73} \left(4 \sqrt{3}+11\right)} & x\to \frac{2}{219} \left(80 \sqrt{3}+147\right) & y\to \frac{1}{219} \left(384-86 \sqrt{3}\right) & \text{MB}\to 4 \sqrt{\frac{1}{219} \left(8 \sqrt{3}+95\right)} & \text{MC}\to 4 \sqrt{\frac{1}{219} \left(167-72 \sqrt{3}\right)} & \text{ME}\to \sqrt{\frac{2}{219} \left(-72 \sqrt{3}-\sqrt{1095 \left(2159-144 \sqrt{3}\right)}+1627\right)} & \text{x1}\to \frac{1}{88} \sqrt{3 \left(95-8 \sqrt{3}\right)} & \text{x2}\to \frac{1}{104} \sqrt{216 \sqrt{3}+501} & \text{x3}\to \frac{\sqrt{\frac{3}{2} \left(88308 \sqrt{3}+\sqrt{66936841560 \sqrt{3}+169134722625}+401743\right)}}{1832} & \text{x4}\to \frac{1}{2 \sqrt{5}} \\
\end{array}
\]
数值化的结果
- xe->4.970898080 ye->5.056201098 x->0.07704050589 y->2.433590728 MB->-2.434809863 MC->4.616489470 ME->-5.552290258 x1->-0.2053548441 x2->0.1083074062 x3->-0.09005292894 x4->0.2236067977
- xe->4.970898080 ye->5.056201098 x->0.07704050589 y->2.433590728 MB->2.434809863 MC->-4.616489470 ME->5.552290258 x1->0.2053548441 x2->-0.1083074062 x3->0.09005292894 x4->-0.2236067977
- xe->1.029101920 ye->2.943798902 x->0.07704050589 y->2.433590728 MB->-2.434809863 MC->4.616489470 ME->-1.080154303 x1->-0.2053548441 x2->0.1083074062 x3->-0.4628968276 x4->-0.2236067977
- xe->1.029101920 ye->2.943798902 x->0.07704050589 y->2.433590728 MB->2.434809863 MC->-4.616489470 ME->1.080154303 x1->0.2053548441 x2->-0.1083074062 x3->0.4628968276 x4->0.2236067977
- xe->3.296923388 ye->6.216266343 x->2.607891001 y->1.073258587 MB->-2.820102741 MC->-1.757797332 ME->-5.188958894 x1->-0.1772985051 x2->-0.2844468989 x3->-0.09635844303 x4->0.2236067977
- xe->3.296923388 ye->6.216266343 x->2.607891001 y->1.073258587 MB->2.820102741 MC->1.757797332 ME->5.188958894 x1->0.1772985051 x2->0.2844468989 x3->0.09635844303 x4->-0.2236067977
- xe->2.703076612 ye->1.783733657 x->2.607891001 y->1.073258587 MB->-2.820102741 MC->-1.757797332 ME->-0.7168229392 x1->-0.1772985051 x2->-0.2844468989 x3->-0.6975223206 x4->-0.2236067977
- xe->2.703076612 ye->1.783733657 x->2.607891001 y->1.073258587 MB->2.820102741 MC->1.757797332 ME->0.7168229392 x1->0.1772985051 x2->0.2844468989 x3->0.6975223206 x4->0.2236067977
复制代码
极值情况
\[\left\{-\sqrt{2 \left(-8 \sqrt{3}+\sqrt{145-80 \sqrt{3}}+17\right)},\sqrt{2 \left(-8 \sqrt{3}+\sqrt{145-80 \sqrt{3}}+17\right)},\sqrt{-16 \sqrt{3}-2 \sqrt{145-80 \sqrt{3}}+34},-\sqrt{-16 \sqrt{3}-2 \sqrt{145-80 \sqrt{3}}+34},-\sqrt{2 \left(8 \sqrt{3}+\sqrt{80 \sqrt{3}+145}+17\right)},\sqrt{2 \left(8 \sqrt{3}+\sqrt{80 \sqrt{3}+145}+17\right)},-\sqrt{16 \sqrt{3}-2 \sqrt{80 \sqrt{3}+145}+34},\sqrt{16 \sqrt{3}-2 \sqrt{80 \sqrt{3}+145}+34}\right\}\]
数值化后
{-3.3706106513988208313,3.3706106513988208313,1.1015253036007585615,-1.1015253036007585615,-9.7668589665727195239,9.7668589665727195239,-5.2947230115731401311,5.2947230115731401311}
由于MB MC ME距离都是非负数,所以只有
第六与第八个结果有意义,
没想到mathematica也能把这方程组求解出来! |
|