找回密码
 欢迎注册
楼主: mathematica

[原创] 初中题,三角形ABC中,BC=8.∠A=60°,如何求AB+AC/2的最大值?

[复制链接]
 楼主| 发表于 2020-6-16 09:08:55 | 显示全部楼层
  1. Clear["Global`*"];
  2. (*计算余弦值子函数,利用三边计算余弦值*)
  3. cs[a_,b_,c_]:=(a^2+b^2-c^2)/(2*a*b)
  4. Maximize[{AB+1/2*AC,cs[AB,AC,8]==Cos[60*Degree]},{AB,AC}]//FullSimplify
复制代码


\[\left\{8 \sqrt{\frac{7}{3}},\left\{\text{AB}\to \frac{40}{\sqrt{21}},\text{AC}\to \frac{32}{\sqrt{21}}\right\}\right\}\]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2020-6-16 09:10:16 | 显示全部楼层
mathematica 发表于 2020-6-16 09:08
\[\left\{8 \sqrt{\frac{7}{3}},\left\{\text{AB}\to \frac{40}{\sqrt{21}},\text{AC}\to \frac{32}{\s ...
  1. Clear["Global`*"];
  2. ans=Solve[{x+y/2==k,x^2-x*y+y^2==64},{x,y}]//FullSimplify
复制代码

求解结果
\[\begin{array}{cc}
x\to \frac{1}{7} \left(5 k-\sqrt{448-3 k^2}\right) & y\to \frac{2}{7} \left(\sqrt{448-3 k^2}+2 k\right) \\
x\to \frac{1}{7} \left(\sqrt{448-3 k^2}+5 k\right) & y\to \frac{1}{7} (-2) \left(\sqrt{448-3 k^2}-2 k\right) \\
\end{array}\]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2020-6-19 09:35:10 | 显示全部楼层
mathematica 发表于 2020-6-16 09:10
求解结果
\[\begin{array}{cc}
x\to \frac{1}{7} \left(5 k-\sqrt{448-3 k^2}\right) & y\to \frac{ ...
  1. Clear["Global`*"];
  2. f=x+y/2+t*(x^2-x*y+y^2-64)
  3. (*拉格朗日乘子法计算极值点*)
  4. ans=Solve[D[f,{{x,y,t}}]==0,{x,y,t}]//FullSimplify
  5. (*带入极值点求解最值*)
  6. f/.ans//FullSimplify
复制代码


\[\left\{\left\{x\to -\frac{40}{\sqrt{21}},y\to -\frac{32}{\sqrt{21}},t\to \frac{\sqrt{\frac{7}{3}}}{16}\right\},\left\{x\to \frac{40}{\sqrt{21}},y\to \frac{32}{\sqrt{21}},t\to -\frac{\sqrt{\frac{7}{3}}}{16}\right\}\right\}\]

\[\left\{-8 \sqrt{\frac{7}{3}},8 \sqrt{\frac{7}{3}}\right\}\]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-21 18:40 , Processed in 0.022402 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表