找回密码
 欢迎注册
查看: 39093|回复: 18

[讨论] 一道高中数学竞赛题

[复制链接]
发表于 2009-8-31 15:39:43 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
zj09.PNG
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-31 19:46:50 | 显示全部楼层
记$f(x)={x^2008}/{1-x^2009}$ 用maxima计算$f''(x)=-{2*x^6024+4042104*x^4015+4030056*x^2006}/{x^6027-3*x^4018+3*x^2009-1}$,分母为$(x^2009-1)^3$ 所以对于00,即函数为凸函数,用琴生不等式知道最小值在$x_1=x_2=...=x_2009$时取到. 当然如果用初等方法,那么只要改为证明对于两项的情况来证明
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-31 20:01:35 | 显示全部楼层
上面不对,好像函数挺复杂的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-31 23:27:08 | 显示全部楼层
$f(x)={x^2008}/{1-x^2009}$ 的一阶和二阶导数均恒为非负。。。 未命名.PNG
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-9-1 10:16:14 | 显示全部楼层
看函数$f(x)={x^2008}/{1-x^2009}$的性质没有用 要看函数$f(x)={x^(2008/2009)}/{1-x}$的性质,这个函数的一阶导数为 $f'(x)={x+2008}/{2009x^(1/2009)(1-x)^2}$,在(0,1)这个函数先减后增,唯一最小值点为 $x=(4018*sqrt(252255)-2018040)/1005~=1/4020~=0.000248$ log(f'(x))的图如下: r.gif 而根据拉格朗日极值公式,我们知道取极值时所有点的导数相等,也就是所有的$x_i$中最多取两个不同的值.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-9-1 10:29:36 | 显示全部楼层
我们要计算的是求$x_1+x_2+...+x_2010=1$,而且$S=f(x_1)+f(x_2)+...+f(x_2010)$最小. 极值情况之一是$x_1=x_2=...=x_2010=1/2010$,这时得到$S=2010*f(1/2010)=1.004292732141903131483849613$ 假设对于其它的极值情况,有u个数小于$c=(4018*sqrt(252255)-2018040)/1005$,另外2010-u个大于c 我们可以通过数值计算 solve(X=10^-100,c,f'(X)-f'((1-u*X)/(2010-u)))来解出对应的X 比如u=2时,分别得到 $x_1=0.0001010072164471798145132823582$, $x_2010=0.0004977098022815096168170665593$ $S=1.004292812863225836906609702$ 比如前面10个S的值为: (10:28) gp > r[1] %92 = 1.004292772463167838632247364 (10:28) gp > r[2] %93 = 1.004292812863225836906609702 (10:28) gp > r[3] %94 = 1.004292853342266589809388898 (10:28) gp > r[4] %95 = 1.004292893900480087736767213 (10:28) gp > r[5] %96 = 1.004292934538056849607922363 (10:28) gp > r[6] %97 = 1.004292975255187924499749221 (10:28) gp > r[7] %98 = 1.004293016052064893287057259 (10:28) gp > r[8] %99 = 1.004293056928879870288263260 由此可见最小值是在$x_1=x_2=...=x_2010$时取到的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-9-1 13:33:20 | 显示全部楼层
$(2009x^2009)*(1-x^2009)^2009<=({2009x^2009+2009*(1-x^2009)}/2010)^2010=(2009/2010)^2010$ 于是我们得到 $x*(1-x^2009)<=2009/{root{2009}{2010^2010}}$ 或者说 ${x^2008}/{1-x^2009}>={root{2009}{2010^2010}x^2009}/2009$ 将$x=x_1,x_2,...,x_2010$带入,得到 $\sum_{i=1}^2010{x_i^2008}/{1-x_i^2009}>=2010/2009root{2009}{2010}$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-9-2 08:47:39 | 显示全部楼层
这道题,凭直觉应在各变量彼此相等时取得最值。 但用初等的方法却很容易缩放过头。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-9-2 08:53:02 | 显示全部楼层
我前面就担心等号不在彼此都相等的时候取到,所以先用数学分析的方法分析了一下. 而根据7#的方法,可以证明$x_i$不超过2010个时,都可以在彼此都相等的时候取到等号.但是更加多的数目就不一定了.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-9-2 11:23:25 | 显示全部楼层
本帖最后由 wayne 于 2009-9-2 12:09 编辑 当$x=\frac{502}{1009020+2009 \sqrt{252255}}=0.000248756$时,f'(x)取最小值,为: 截图01.png 截图00.png 再给一张取极值处的局部图: Untitled-1.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 05:25 , Processed in 0.036538 second(s), 19 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表