- 注册时间
- 2008-11-26
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 149497
- 在线时间
- 小时
|
发表于 2020-9-4 16:30:57
|
显示全部楼层
本帖最后由 mathematica 于 2020-9-4 16:35 编辑
- Clear["Global`*"];
- out=Maximize[{DE+DF,
- DE^2==(xd-xe)^2+(yd-ye)^2&&
- DF^2==(xd-(3-Sqrt[3]))^2+(yd-0)^2&&
- (*两个向量垂直且根号3倍的关系*)
- (xa-xd)==-Sqrt[3]*(yd-0)&&
- (ya-yd)==Sqrt[3]*(xd-2)&&
- {xa,ya}=={(Sqrt[3]+1)*xe,(Sqrt[3]+1)*ye}&&
- xa^2+ya^2==1&&
- DE>0&&DF>0
- },
- {DE,DF,xa,ya,xe,ye,xd,yd}];
- ans={out[[1]],DE,DF,xa,ya,xe,ye,xd,yd}/.out[[2]];
- aaa=N[ans,2000];
- Print["显示最大值"]
- bbb=RootApproximant[aaa]//ToRadicals//FullSimplify
- N[bbb]
- Clear["Global`*"];
- out=Minimize[{DE+DF,
- DE^2==(xd-xe)^2+(yd-ye)^2&&
- DF^2==(xd-(3-Sqrt[3]))^2+(yd-0)^2&&
- (*两个向量垂直且根号3倍的关系*)
- (xa-xd)==-Sqrt[3]*(yd-0)&&
- (ya-yd)==Sqrt[3]*(xd-2)&&
- {xa,ya}=={(Sqrt[3]+1)*xe,(Sqrt[3]+1)*ye}&&
- xa^2+ya^2==1&&
- DE>0&&DF>0
- },
- {DE,DF,xa,ya,xe,ye,xd,yd}];
- ans={out[[1]],DE,DF,xa,ya,xe,ye,xd,yd}/.out[[2]];
- aaa=N[ans,2000];
- Print["显示最小值"]
- bbb=RootApproximant[aaa]//ToRadicals//FullSimplify
- N[bbb]
复制代码
最大值
\[\left\{\frac{1}{4} \left(9 \sqrt{2}+4 \sqrt{3}-3 \sqrt{6}+2\right),\frac{1}{4} \sqrt{3} \left(-\sqrt{2}+\sqrt{6}+4\right),\sqrt{6-3 \sqrt{3}}+\frac{1}{2},-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},\frac{1}{4} \left(\sqrt{2}-\sqrt{6}\right),\frac{\sqrt{2-\sqrt{3}}}{2},\frac{1}{4} \left(\sqrt{2-\sqrt{3}}+6\right),\frac{1}{4} \left(2 \sqrt{3}+\sqrt{\sqrt{3}+2}\right)\right\}\]
数值化
{3.57691, 2.18034, 1.39658, -0.707107, 0.707107, -0.258819, 0.258819, 1.62941, 1.34899}
最小值
\[\left\{\frac{1}{2} \left(2 \sqrt{3}+\sqrt{6-3 \sqrt{3}}-1\right),\frac{1}{4} \sqrt{3} \left(\sqrt{2}-\sqrt{6}+4\right),\sqrt{6-3 \sqrt{3}}-\frac{1}{2},\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},\frac{\sqrt{2-\sqrt{3}}}{2},\frac{1}{4} \left(\sqrt{2}-\sqrt{6}\right),\frac{1}{8} \left(\sqrt{2}-\sqrt{6}+12\right),\frac{1}{4} \left(2 \sqrt{3}-\sqrt{\sqrt{3}+2}\right)\right\}\]
数值化
{1.68034, 1.28376, 0.396575, 0.707107, -0.707107, 0.258819, -0.258819, 1.37059, 0.383062}
|
|