- 注册时间
- 2008-11-26
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 149507
- 在线时间
- 小时
|
楼主 |
发表于 2021-1-22 08:49:07
|
显示全部楼层
王守恩 发表于 2020-11-30 19:37
\(1=(\cos a)^2+(\sin a)^2\)
\(1=(\cos a)^2+(\sin a\cos b)^2+(\sin a\sin b)^2\)
\(1=(\cos a)^2+(\ ...
利用kkt条件,先求出所有可能的极值点
- Clear["Global`*"];
- f=(a-b)*(b-c)*(c-a)+x*(a^2+b^2+c^2-1)-x1*a-x2*b-x3*c;
- ans=ToRadicals@FullSimplify@Solve[D[f,{{a,b,c,x}}]==0&&x1*a==0&&x2*b==0&&x3*c==0,{a,b,c,x,x1,x2,x3}];
- aaa=Append[#,FullSimplify[(f/.#)]]&/@ans;(*增加一列函数值*)
- bbb=Sort[aaa,#1[[8]]>#2[[8]]&];(*按照函数值降序排列*)
- Grid[bbb,Alignment->Left]
- (*选择abc全部大于等于零的情况*)
- ccc=Select[bbb,(a/.#[[1]])>=0&&(b/.#[[2]])>=0&&(c/.#[[3]])>=0&];
- Grid[ccc,Alignment->Left]
复制代码
所有可能的极值点
\[\begin{array}{llllllll}
a\to \frac{1}{\sqrt{2}} & b\to -\frac{1}{\sqrt{2}} & c\to 0 & x\to -\frac{3}{2 \sqrt{2}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to 0 & \frac{1}{\sqrt{2}} \\
a\to -\frac{1}{\sqrt{2}} & b\to 0 & c\to \frac{1}{\sqrt{2}} & x\to -\frac{3}{2 \sqrt{2}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to 0 & \frac{1}{\sqrt{2}} \\
a\to \frac{1}{\sqrt{2}} & b\to -\frac{1}{\sqrt{2}} & c\to 0 & x\to -\frac{3}{2 \sqrt{2}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to 0 & \frac{1}{\sqrt{2}} \\
a\to -\frac{1}{\sqrt{2}} & b\to 0 & c\to \frac{1}{\sqrt{2}} & x\to -\frac{3}{2 \sqrt{2}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to 0 & \frac{1}{\sqrt{2}} \\
a\to 0 & b\to \frac{1}{\sqrt{2}} & c\to -\frac{1}{\sqrt{2}} & x\to -\frac{3}{2 \sqrt{2}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to 0 & \frac{1}{\sqrt{2}} \\
a\to 0 & b\to \frac{1}{\sqrt{2}} & c\to -\frac{1}{\sqrt{2}} & x\to -\frac{3}{2 \sqrt{2}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to 0 & \frac{1}{\sqrt{2}} \\
a\to -\sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & b\to -\sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & c\to 0 & x\to -\frac{1}{2 \sqrt{3}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to \frac{\sqrt{5}}{3} & \frac{1}{3 \sqrt{3}} \\
a\to \sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & b\to \sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & c\to 0 & x\to -\frac{1}{2 \sqrt{3}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to -\frac{\sqrt{5}}{3} & \frac{1}{3 \sqrt{3}} \\
a\to \sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & b\to 0 & c\to \sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & x\to -\frac{1}{2 \sqrt{3}} & \text{x1}\to 0 & \text{x2}\to -\frac{\sqrt{5}}{3} & \text{x3}\to 0 & \frac{1}{3 \sqrt{3}} \\
a\to -\sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & b\to 0 & c\to -\sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & x\to -\frac{1}{2 \sqrt{3}} & \text{x1}\to 0 & \text{x2}\to \frac{\sqrt{5}}{3} & \text{x3}\to 0 & \frac{1}{3 \sqrt{3}} \\
a\to 0 & b\to -\sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & c\to -\sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & x\to -\frac{1}{2 \sqrt{3}} & \text{x1}\to \frac{\sqrt{5}}{3} & \text{x2}\to 0 & \text{x3}\to 0 & \frac{1}{3 \sqrt{3}} \\
a\to 0 & b\to \sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & c\to \sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & x\to -\frac{1}{2 \sqrt{3}} & \text{x1}\to -\frac{\sqrt{5}}{3} & \text{x2}\to 0 & \text{x3}\to 0 & \frac{1}{3 \sqrt{3}} \\
a\to 1 & b\to 0 & c\to 0 & x\to 0 & \text{x1}\to 0 & \text{x2}\to -1 & \text{x3}\to 1 & 0 \\
a\to -1 & b\to 0 & c\to 0 & x\to 0 & \text{x1}\to 0 & \text{x2}\to -1 & \text{x3}\to 1 & 0 \\
a\to \frac{1}{\sqrt{3}} & b\to \frac{1}{\sqrt{3}} & c\to \frac{1}{\sqrt{3}} & x\to 0 & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to 0 & 0 \\
a\to -\frac{1}{\sqrt{3}} & b\to -\frac{1}{\sqrt{3}} & c\to -\frac{1}{\sqrt{3}} & x\to 0 & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to 0 & 0 \\
a\to 0 & b\to 1 & c\to 0 & x\to 0 & \text{x1}\to 1 & \text{x2}\to 0 & \text{x3}\to -1 & 0 \\
a\to 0 & b\to -1 & c\to 0 & x\to 0 & \text{x1}\to 1 & \text{x2}\to 0 & \text{x3}\to -1 & 0 \\
a\to 0 & b\to 0 & c\to 1 & x\to 0 & \text{x1}\to -1 & \text{x2}\to 1 & \text{x3}\to 0 & 0 \\
a\to 0 & b\to 0 & c\to -1 & x\to 0 & \text{x1}\to -1 & \text{x2}\to 1 & \text{x3}\to 0 & 0 \\
a\to \sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & b\to \sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & c\to 0 & x\to \frac{1}{2 \sqrt{3}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to \frac{\sqrt{5}}{3} & -\frac{1}{3 \sqrt{3}} \\
a\to -\sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & b\to -\sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & c\to 0 & x\to \frac{1}{2 \sqrt{3}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to -\frac{\sqrt{5}}{3} & -\frac{1}{3 \sqrt{3}} \\
a\to -\sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & b\to 0 & c\to -\sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & x\to \frac{1}{2 \sqrt{3}} & \text{x1}\to 0 & \text{x2}\to -\frac{\sqrt{5}}{3} & \text{x3}\to 0 & -\frac{1}{3 \sqrt{3}} \\
a\to \sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & b\to 0 & c\to \sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & x\to \frac{1}{2 \sqrt{3}} & \text{x1}\to 0 & \text{x2}\to \frac{\sqrt{5}}{3} & \text{x3}\to 0 & -\frac{1}{3 \sqrt{3}} \\
a\to 0 & b\to \sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & c\to \sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & x\to \frac{1}{2 \sqrt{3}} & \text{x1}\to \frac{\sqrt{5}}{3} & \text{x2}\to 0 & \text{x3}\to 0 & -\frac{1}{3 \sqrt{3}} \\
a\to 0 & b\to -\sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & c\to -\sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & x\to \frac{1}{2 \sqrt{3}} & \text{x1}\to -\frac{\sqrt{5}}{3} & \text{x2}\to 0 & \text{x3}\to 0 & -\frac{1}{3 \sqrt{3}} \\
a\to -\frac{1}{\sqrt{2}} & b\to \frac{1}{\sqrt{2}} & c\to 0 & x\to \frac{3}{2 \sqrt{2}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to 0 & -\frac{1}{\sqrt{2}} \\
a\to \frac{1}{\sqrt{2}} & b\to 0 & c\to -\frac{1}{\sqrt{2}} & x\to \frac{3}{2 \sqrt{2}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to 0 & -\frac{1}{\sqrt{2}} \\
a\to \frac{1}{\sqrt{2}} & b\to 0 & c\to -\frac{1}{\sqrt{2}} & x\to \frac{3}{2 \sqrt{2}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to 0 & -\frac{1}{\sqrt{2}} \\
a\to -\frac{1}{\sqrt{2}} & b\to \frac{1}{\sqrt{2}} & c\to 0 & x\to \frac{3}{2 \sqrt{2}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to 0 & -\frac{1}{\sqrt{2}} \\
a\to 0 & b\to -\frac{1}{\sqrt{2}} & c\to \frac{1}{\sqrt{2}} & x\to \frac{3}{2 \sqrt{2}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to 0 & -\frac{1}{\sqrt{2}} \\
a\to 0 & b\to -\frac{1}{\sqrt{2}} & c\to \frac{1}{\sqrt{2}} & x\to \frac{3}{2 \sqrt{2}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to 0 & -\frac{1}{\sqrt{2}} \\
\end{array}\]
所有非负的极值点
\[\begin{array}{llllllll}
a\to \sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & b\to \sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & c\to 0 & x\to -\frac{1}{2 \sqrt{3}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to -\frac{\sqrt{5}}{3} & \frac{1}{3 \sqrt{3}} \\
a\to \sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & b\to 0 & c\to \sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & x\to -\frac{1}{2 \sqrt{3}} & \text{x1}\to 0 & \text{x2}\to -\frac{\sqrt{5}}{3} & \text{x3}\to 0 & \frac{1}{3 \sqrt{3}} \\
a\to 0 & b\to \sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & c\to \sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & x\to -\frac{1}{2 \sqrt{3}} & \text{x1}\to -\frac{\sqrt{5}}{3} & \text{x2}\to 0 & \text{x3}\to 0 & \frac{1}{3 \sqrt{3}} \\
a\to 1 & b\to 0 & c\to 0 & x\to 0 & \text{x1}\to 0 & \text{x2}\to -1 & \text{x3}\to 1 & 0 \\
a\to \frac{1}{\sqrt{3}} & b\to \frac{1}{\sqrt{3}} & c\to \frac{1}{\sqrt{3}} & x\to 0 & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to 0 & 0 \\
a\to 0 & b\to 1 & c\to 0 & x\to 0 & \text{x1}\to 1 & \text{x2}\to 0 & \text{x3}\to -1 & 0 \\
a\to 0 & b\to 0 & c\to 1 & x\to 0 & \text{x1}\to -1 & \text{x2}\to 1 & \text{x3}\to 0 & 0 \\
a\to \sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & b\to \sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & c\to 0 & x\to \frac{1}{2 \sqrt{3}} & \text{x1}\to 0 & \text{x2}\to 0 & \text{x3}\to \frac{\sqrt{5}}{3} & -\frac{1}{3 \sqrt{3}} \\
a\to \sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & b\to 0 & c\to \sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & x\to \frac{1}{2 \sqrt{3}} & \text{x1}\to 0 & \text{x2}\to \frac{\sqrt{5}}{3} & \text{x3}\to 0 & -\frac{1}{3 \sqrt{3}} \\
a\to 0 & b\to \sqrt{\frac{1}{6} \left(\sqrt{5}+3\right)} & c\to \sqrt{\frac{1}{6} \left(3-\sqrt{5}\right)} & x\to \frac{1}{2 \sqrt{3}} & \text{x1}\to \frac{\sqrt{5}}{3} & \text{x2}\to 0 & \text{x3}\to 0 & -\frac{1}{3 \sqrt{3}} \\
\end{array}\] |
|