- 注册时间
- 2018-12-8
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 3549
- 在线时间
- 小时
|
楼主 |
发表于 2020-10-20 08:39:52
|
显示全部楼层
本帖最后由 dlpg070 于 2020-10-20 11:17 编辑
dlpg070 发表于 2020-10-19 21:56
已经验证前34项
{1,4,37,334,3007,27064,243577,2192194,19729747,177567724,1598109517,14382985654, ...
那串数的通项公式
an[n_] := 1/8 3^(-(3/2) - 2 n) (-3 + 11 9^n) \[Pi]; n>=0
分子的通项 an*Sqrt[3]/Pi求分子即可
- (* 通项和极限 *)
- Clear["Global`*"];
- n0=30
- an[n_]:=1/8 3^(-(3/2)-2 n) (-3+11 9^n) \[Pi];
- tab=Table[an[n],
- {n,0,33}];
- Grid[Table[{i,Flatten[tab[[i]]]},{i,1,Length[tab]}],Alignment->Left]
- listnew=Table[Numerator[tab[[i]]*Sqrt[3]/Pi ],{i,1,34}];
- Print["分子数列:34项"]
- Flatten[listnew,1]
- list1new=Table[Denominator[tab[[i]]*Sqrt[3]/Pi ],{i,1,34}];
- Print["分母数列:34项"]
- Flatten[list1new,1]
- lim=Limit[an[n],n->\[Infinity]];
- Print["极限 limit=",lim," = ",N[lim,n0]];
- Print["=== 通项 end ==="]
复制代码
计算结果:
- 1 \[Pi]/(3 Sqrt[3])
- 2 (4 \[Pi])/(9 Sqrt[3])
- 3 (37 \[Pi])/(81 Sqrt[3])
- 4 (334 \[Pi])/(729 Sqrt[3])
- 5 (3007 \[Pi])/(6561 Sqrt[3])
- 6 (27064 \[Pi])/(59049 Sqrt[3])
- 7 (243577 \[Pi])/(531441 Sqrt[3])
- 8 (2192194 \[Pi])/(4782969 Sqrt[3])
- 9 (19729747 \[Pi])/(43046721 Sqrt[3])
- 10 (177567724 \[Pi])/(387420489 Sqrt[3])
- 11 (1598109517 \[Pi])/(3486784401 Sqrt[3])
- 12 (14382985654 \[Pi])/(31381059609 Sqrt[3])
- 13 (129446870887 \[Pi])/(282429536481 Sqrt[3])
- 14 (1165021837984 \[Pi])/(2541865828329 Sqrt[3])
- 15 (10485196541857 \[Pi])/(22876792454961 Sqrt[3])
- 16 (94366768876714 \[Pi])/(205891132094649 Sqrt[3])
- 17 (849300919890427 \[Pi])/(1853020188851841 Sqrt[3])
- 18 (7643708279013844 \[Pi])/(16677181699666569 Sqrt[3])
- 19 (68793374511124597 \[Pi])/(150094635296999121 Sqrt[3])
- 20 (619140370600121374 \[Pi])/(1350851717672992089 Sqrt[3])
- 21 (5572263335401092367 \[Pi])/(12157665459056928801 Sqrt[3])
- 22 (50150370018609831304 \[Pi])/(109418989131512359209 Sqrt[3])
- 23 (451353330167488481737 \[Pi])/(984770902183611232881 Sqrt[3])
- 24 (4062179971507396335634 \[Pi])/(8862938119652501095929 Sqrt[3])
- 25 (36559619743566567020707 \[Pi])/(79766443076872509863361 Sqrt[3])
- 26 (329036577692099103186364 \[Pi])/(717897987691852588770249 Sqrt[3])
- 27 (2961329199228891928677277 \[Pi])/(6461081889226673298932241 Sqrt[3])
- 28 (26651962793060027358095494 \[Pi])/(58149737003040059690390169 Sqrt[3])
- 29 (239867665137540246222859447 \[Pi])/(523347633027360537213511521 Sqrt[3])
- 30 (2158808986237862216005735024 \[Pi])/(4710128697246244834921603689 Sqrt[3])
- 31 (19429280876140759944051615217 \[Pi])/(42391158275216203514294433201 Sqrt[3])
- 32 (174863527885266839496464536954 \[Pi])/(381520424476945831628649898809 Sqrt[3])
- 33 (1573771750967401555468180832587 \[Pi])/(3433683820292512484657849089281 Sqrt[3])
- 34 (14163945758706613999213627493284 \[Pi])/(30903154382632612361920641803529 Sqrt[3])
复制代码
分子数列:
- {1,4,37,334,3007,27064,243577,2192194,19729747,177567724,1598109517,14382985654,129446870887,1165021837984,10485196541857,94366768876714,849300919890427,7643708279013844,68793374511124597,619140370600121374,5572263335401092367,50150370018609831304,451353330167488481737,4062179971507396335634,36559619743566567020707,329036577692099103186364,2961329199228891928677277,26651962793060027358095494,239867665137540246222859447,2158808986237862216005735024,19429280876140759944051615217,174863527885266839496464536954,1573771750967401555468180832587,14163945758706613999213627493284}
复制代码
极限 limit=(11 \[Pi])/(24 Sqrt[3]) = 0.831324708607349848188952534753
|
|