- 注册时间
- 2013-9-27
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 515
- 在线时间
- 小时
|
发表于 2020-12-31 11:37:39
|
显示全部楼层
利用复数容易证明:令$A = 0$,$B = 1$,$C = s + ti$,$D = u + vi$, $E = p + qi$
根据
\[\frac{{A - B}}{{B - C}}\frac{{C - D}}{{D - E}}\frac{{E - F}}{{F - A}} = - 1\]
解出
\[F = \frac{{(p + iq)(s + it - u - iv)}}{{ - p - iq + s + ps + iqs + it + ipt - qt - su - itu - isv + tv}}\]
若点$P$使得△PAC∽△EFD, △PCE∽△ABF, △PEA∽△CDB, 即:
\[\left\{ \begin{array}{l}
\frac{{P - A}}{{P - C}} = \frac{{E - F}}{{E - D}} \\
\frac{{P - C}}{{P - E}} = \frac{{A - B}}{{A - F}} \\
\frac{{P - E}}{{P - A}} = \frac{{C - D}}{{C - B}} \\
\end{array} \right.\]
方程组有公共解:
\[P = \frac{{(p + iq)( - 1 + s + it)}}{{ - 1 + u + iv}}\]
其余全部可由复数运算得到,只需再结合几个结论:
(1). $z_1,z_2,z_3$的外接圆圆心
\[O = \frac{{\left( {{z_1} - {z_2}} \right){z_3}\mathop {{z_3}}\limits^{\_\_} + \left( {{z_2} - {z_3}} \right){z_1}\mathop {{z_1}}\limits^{\_\_} + \left( {{z_3} - {z_1}} \right){z_2}\mathop {{z_2}}\limits^{\_\_} }}{{\left( {{z_1} - {z_2}} \right)\mathop {{z_3}}\limits^{\_\_} + \left( {{z_2} - {z_3}} \right)\mathop {{z_1}}\limits^{\_\_} + \left( {{z_3} - {z_1}} \right)\mathop {{z_2}}\limits^{\_\_} }}\]
(2). $z_1,z_2,z_3$的面积(沿边界顶点逆时针)
\[S = - \frac{1}{2}{\mathop{\rm Im}\nolimits} \left( {{z_1}\mathop {{z_2}}\limits^{\_\_} + {z_2}\mathop {{z_3}}\limits^{\_\_} + {z_3}\mathop {{z_1}}\limits^{\_\_} } \right)\]
$z_1,z_2,z_3,...,z_n$的面积
\[S = - \frac{1}{2}{\mathop{\rm Im}\nolimits} \left( {{z_1}\mathop {{z_2}}\limits^{\_\_} + {z_2}\mathop {{z_3}}\limits^{\_\_} + ... {z_n}\mathop {{z_1}}\limits^{\_\_} } \right)\]
(3). $P$关于$z_1,z_2,z_3$的共轭点$Q$为
\[Q = \frac{{\beta \gamma A + \gamma \alpha B + \alpha \beta C}}{{\beta \gamma + \gamma \alpha + \alpha \beta }}\]
\[\alpha \to \frac{{\left( {P - {z_2}} \right)\mathop {{z_3}}\limits^{\_\_} + \left( {{z_2} - {z_3}} \right)\mathop P\limits^{\_\_} + \left( {{z_3} - P} \right)\mathop {{z_2}}\limits^{\_\_} }}{{\left( {{z_1} - {z_2}} \right)\mathop {{z_3}}\limits^{\_\_} + \left( {{z_2} - {z_3}} \right)\mathop {{z_1}}\limits^{\_\_} + \left( {{z_3} - {z_1}} \right)\mathop {{z_2}}\limits^{\_\_} }}\]
\[\beta \to \frac{{\left( {{z_1} - P} \right)\mathop {{z_3}}\limits^{\_\_} + \left( {P - {z_3}} \right)\mathop {{z_1}}\limits^{\_\_} + \left( {{z_3} - {z_1}} \right)\mathop P\limits^{\_\_} }}{{\left( {{z_1} - {z_2}} \right)\mathop {{z_3}}\limits^{\_\_} + \left( {{z_2} - {z_3}} \right)\mathop {{z_1}}\limits^{\_\_} + \left( {{z_3} - {z_1}} \right)\mathop {{z_2}}\limits^{\_\_} }}\]
\[\gamma \to \frac{{\left( {{z_1} - {z_2}} \right)\mathop P\limits^{\_\_} + \left( {{z_2} - P} \right)\mathop {{z_1}}\limits^{\_\_} + \left( {P - {z_1}} \right)\mathop {{z_2}}\limits^{\_\_} }}{{\left( {{z_1} - {z_2}} \right)\mathop {{z_3}}\limits^{\_\_} + \left( {{z_2} - {z_3}} \right)\mathop {{z_1}}\limits^{\_\_} + \left( {{z_3} - {z_1}} \right)\mathop {{z_2}}\limits^{\_\_} }}\]
(4). Marden定理:与$z_1,z_2,z_3$所构成的三角形三边相切的二次曲线的焦点满足方程:
\[\left( {z - {z_1}} \right)\left( {z - {z_2}} \right) + \lambda \mu \left( {z - {z_2}} \right)\left( {z - {z_3}} \right) + \mu \left( {z - {z_3}} \right)\left( {z - {z_1}} \right) = 0\]
$\lambda ,\mu ,\frac{1}{\lambda \mu }$分别为切点所分三边的比例。
可以断言,"完美六边形" 目前的研究大致仅限于外心,垂心,重心等较简单的不涉及根式表示的点,而关于内心、旁心等的结论几乎找不到。 |
|