- 注册时间
- 2009-3-10
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 2345
- 在线时间
- 小时
|
楼主 |
发表于 2022-2-1 20:24:35
|
显示全部楼层
- Clear["Global`*"]
- \!\(\*OverscriptBox["o", "_"]\) = o = 0;
- \!\(\*OverscriptBox["a", "_"]\) = 1/a;
- \!\(\*OverscriptBox["b", "_"]\) = 1/b; b = -I/v; c = -
- \!\(\*OverscriptBox["b", "_"]\);
- \!\(\*OverscriptBox["c", "_"]\) = 1/c;(*圆心在原点,假设e^(i\[Alpha])=v*)
- m = (b + c)/2;
- \!\(\*OverscriptBox["m", "_"]\) = (
- \!\(\*OverscriptBox["b", "_"]\) +
- \!\(\*OverscriptBox["c", "_"]\))/2; h = a + b + c;
- \!\(\*OverscriptBox["h", "_"]\) =
- \!\(\*OverscriptBox["a", "_"]\) +
- \!\(\*OverscriptBox["b", "_"]\) +
- \!\(\*OverscriptBox["c", "_"]\);(*外心在原点成立*)
- k[a_, b_] := (a - b)/(
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\));
- \!\(\*OverscriptBox["k", "_"]\)[a_, b_] := 1/k[a, b];(*复斜率定义*)
- e = a ((a - c) (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)) - (b - c) (
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)) )/(b - a) + b; f = a ((a - b) (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)) - (b - c) (
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)))/(a - c) + c;(*把
- \!\(\*OverscriptBox["BA", "\[RightVector]"]\)和
- \!\(\*OverscriptBox["BE", "\[RightVector]"]\)旋转到
- \!\(\*OverscriptBox["AC", "\[RightVector]"]\)相同的方向,再利用复斜率,根据线段相等条件求得*)
- \!\(\*OverscriptBox["e", "_"]\) =
- \!\(\*OverscriptBox["a", "_"]\) ((a - c) (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)) - (b - c) (
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)))/(
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\)) +
- \!\(\*OverscriptBox["b", "_"]\);
- \!\(\*OverscriptBox["f", "_"]\) =
- \!\(\*OverscriptBox["a", "_"]\) ((a - b) (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)) - (b - c) (
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)))/(
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)) +
- \!\(\*OverscriptBox["c", "_"]\);
- n = (e + f)/2;
- \!\(\*OverscriptBox["n", "_"]\) = (
- \!\(\*OverscriptBox["e", "_"]\) +
- \!\(\*OverscriptBox["f", "_"]\))/2;
- Simplify[{b,
- \!\(\*OverscriptBox["b", "_"]\), c,
- \!\(\*OverscriptBox["c", "_"]\), , e,
- \!\(\*OverscriptBox["e", "_"]\), f,
- \!\(\*OverscriptBox["f", "_"]\)}]
- Simplify[{h, m, n, k[o, h], k[m, n], , (h - o)/(m - n), (
- \!\(\*OverscriptBox["h", "_"]\) -
- \!\(\*OverscriptBox["o", "_"]\))/(
- \!\(\*OverscriptBox["m", "_"]\) -
- \!\(\*OverscriptBox["n", "_"]\))}]
复制代码
- \!\(\*OverscriptBox["b", "_"]\) = b = 0;
- \!\(\*OverscriptBox["c", "_"]\) = c = 1; a = 1/(1 - \[Lambda] v);
- \!\(\*OverscriptBox["a", "_"]\) = v/(v - \[Lambda]);(*假设
- \!\(\*OverscriptBox["AC", "\[RightVector]"]\)/
- \!\(\*OverscriptBox["AB", "\[RightVector]"]\)=\[Lambda]v*)
- m = (b + c)/2;
- \!\(\*OverscriptBox["m", "_"]\) = (
- \!\(\*OverscriptBox["b", "_"]\) +
- \!\(\*OverscriptBox["c", "_"]\))/2; n = (e + f)/2;
- \!\(\*OverscriptBox["n", "_"]\) = (
- \!\(\*OverscriptBox["e", "_"]\) +
- \!\(\*OverscriptBox["f", "_"]\))/2;
- k[a_, b_] := (a - b)/(
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\));
- \!\(\*OverscriptBox["k", "_"]\)[a_, b_] := 1/k[a, b];(*复斜率定义*)
- kAB = k[a, b]; kAC = k[a, c];
- Chuixin[a_, b_, c_] := (
- \!\(\*OverscriptBox["a", "_"]\) (b - c) (b + c - a) +
- \!\(\*OverscriptBox["b", "_"]\) (c - a) (c + a - b) +
- \!\(\*OverscriptBox["c", "_"]\) (a - b) (a + b - c) )/((b - c)
- \!\(\*OverscriptBox["a", "_"]\) + (-a + c)
- \!\(\*OverscriptBox["b", "_"]\) + (a - b)
- \!\(\*OverscriptBox["c", "_"]\));(*垂心公式*)
- \!\(\*OverscriptBox["Chuixin", "_"]\)[a_, b_, c_] := -((a (
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)) (
- \!\(\*OverscriptBox["b", "_"]\) +
- \!\(\*OverscriptBox["c", "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\)) + b (
- \!\(\*OverscriptBox["c", "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\)) (
- \!\(\*OverscriptBox["c", "_"]\) +
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)) + c (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)) (
- \!\(\*OverscriptBox["a", "_"]\) +
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)) )/((b - c)
- \!\(\*OverscriptBox["a", "_"]\) + (-a + c)
- \!\(\*OverscriptBox["b", "_"]\) + (a - b)
- \!\(\*OverscriptBox["c", "_"]\)));
- Waixin[a_, b_, c_] := (a
- \!\(\*OverscriptBox["a", "_"]\) (b - c) + b
- \!\(\*OverscriptBox["b", "_"]\) (c - a) + c
- \!\(\*OverscriptBox["c", "_"]\) (a - b) )/(
- \!\(\*OverscriptBox["a", "_"]\) (b - c) +
- \!\(\*OverscriptBox["b", "_"]\) (c - a) +
- \!\(\*OverscriptBox["c", "_"]\) (a - b));
- \!\(\*OverscriptBox["Waixin", "_"]\)[a_, b_, c_] := -((a
- \!\(\*OverscriptBox["a", "_"]\) (
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)) + b
- \!\(\*OverscriptBox["b", "_"]\) (
- \!\(\*OverscriptBox["c", "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\)) + c
- \!\(\*OverscriptBox["c", "_"]\) (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)) )/(
- \!\(\*OverscriptBox["a", "_"]\) (b - c) +
- \!\(\*OverscriptBox["b", "_"]\) (c - a) +
- \!\(\*OverscriptBox["c", "_"]\) (a - b)));(*外心公式*)
- h = Chuixin[a, b, c];
- \!\(\*OverscriptBox["h", "_"]\) =
- \!\(\*OverscriptBox["Chuixin", "_"]\)[a, b, c]; o = Waixin[a, b, c];
- \!\(\*OverscriptBox["o", "_"]\) =
- \!\(\*OverscriptBox["Waixin", "_"]\)[a, b, c];
- e = kAC ((a - c) (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)) - (b - c) (
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)) )/((b - a) I v) + b; f =
- v kAB ((a - b) (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)) - (b - c) (
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)))/(I (a - c)) + c;(*把
- \!\(\*OverscriptBox["BA", "\[RightVector]"]\)和
- \!\(\*OverscriptBox["BE", "\[RightVector]"]\)旋转到
- \!\(\*OverscriptBox["AC", "\[RightVector]"]\)相同的方向,再利用复斜率,根据线段相等条件求得*)
- \!\(\*OverscriptBox["e", "_"]\) = v ((a - c) (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)) - (b - c) (
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)))/(-I (
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\)) kAC) +
- \!\(\*OverscriptBox["b", "_"]\);
- \!\(\*OverscriptBox["f", "_"]\) = ((a - b) (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)) - (b - c) (
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)))/(-I (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)) v kAB) +
- \!\(\*OverscriptBox["c", "_"]\);
- Simplify[{e,
- \!\(\*OverscriptBox["e", "_"]\), f,
- \!\(\*OverscriptBox["f", "_"]\)}]
- Simplify[{h,
- \!\(\*OverscriptBox["h", "_"]\), o,
- \!\(\*OverscriptBox["o", "_"]\), , m,
- \!\(\*OverscriptBox["m", "_"]\), n,
- \!\(\*OverscriptBox["n", "_"]\), , k[o, h], k[m, n]}]
- Simplify[{(h - o)/(n - m)}]
复制代码
|
|