- 注册时间
- 2009-2-12
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 23498
- 在线时间
- 小时
|
发表于 2022-3-2 09:34:48
|
显示全部楼层
参考 https://bbs.emath.ac.cn/thread-2076-1-1.html
由$\frac{1}{(x+1)x} + \frac{1}{(x+1)} = \frac{1}{x}$ 可以推演到三个数的情况, 比如其中一种: $\frac{1}{x y(x+1) (y+1)}+\frac{1}{x (x+1) (y+1)}+\frac{1}{(x+1) y}= \frac{1}{xy}$, 也就是$\frac{1}{x y(x+1) (y+1) z}+\frac{1}{x (x+1) (y+1)z}+\frac{1}{(x+1) yz}= \frac{1}{xyz}$
而: $\frac{1}{a} + \frac{1}{b} = \frac{1}{8}$ 有三组解: {{24,12},{40,10},{72,9}} , 因为$min(a,b) <=16<=max(a,b)$
$\frac{1}{a} + \frac{1}{b} = \frac{1}{4}$ 有两组解: {{12, 6}, {20, 5}}, 因为$min(a,b) <=8<=max(a,b)$
$\frac{1}{a} + \frac{1}{b} = \frac{1}{2}$ 有一组解: {{6, 3}}, 因为$min(a,b) <=4<=max(a,b)$
又 $3/ {max(a,b,c)} <= frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{8} <=3/ {min(a,b,c)}$ , 所以 $min(a,b,c) <=24<=max(a,b,c)$, 这就为 上面的 等比例 缩放 提供了基础.
- {24,24,24}
- {28,24,21}
- {30,24,20}
- {32,32,16}
- {36,24,18}
- {40,20,20}
- {40,30,15}
- {40,35,14}
- {48,24,16}
- {48,48,12}
- {56,28,14}
- {56,42,12}
- {60,24,15}
- {60,40,12}
- {72,18,18}
- {72,36,12}
- {80,20,16}
- {80,80,10}
- {84,24,14}
- {88,33,12}
- {88,44,11}
- {90,72,10}
- {96,32,12}
- {104,26,13}
- {104,65,10}
- {110,40,11}
- {120,20,15}
- {120,30,12}
- {120,60,10}
- {136,17,17}
- {140,56,10}
- {144,18,16}
- {144,144,9}
- {153,136,9}
- {156,24,13}
- {168,21,14}
- {168,28,12}
- {168,126,9}
- {180,120,9}
- {200,50,10}
- {216,27,12}
- {216,108,9}
- {234,104,9}
- {240,48,10}
- {264,33,11}
- {264,99,9}
- {272,17,16}
- {280,20,14}
- {288,96,9}
- {312,26,12}
- {352,32,11}
- {360,18,15}
- {360,45,10}
- {360,90,9}
- {396,88,9}
- {440,44,10}
- {504,84,9}
- {600,25,12}
- {648,81,9}
- {720,80,9}
- {840,42,10}
- {936,78,9}
- {1064,19,14}
- {1320,30,11}
- {1368,76,9}
- {1640,41,10}
- {1800,75,9}
- {2184,21,13}
- {2664,74,9}
- {5256,73,9}
复制代码 |
|