找回密码
 欢迎注册
楼主: wayne

[转载] 求极限

[复制链接]
 楼主| 发表于 2009-10-30 10:51:10 | 显示全部楼层
大家都太有才了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-10-30 10:53:01 | 显示全部楼层
本帖最后由 wayne 于 2009-10-30 10:58 编辑 根据9楼的意思,我用软件算出来: $lim_{n->\oo}n\prod _{m=1}^n (\frac{a}{4m^2}-\frac{1}{m}+1)$ $=\frac {cos\frac {\sqrt {1 - a}\pi} {2} } {\pi}$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-10-30 11:17:25 | 显示全部楼层
10#方法最主要在于 在学过复变函数以后,我们看到无穷乘积 $\prod_{m=1}^{infty}(1-{z^2}/{(m-1/2)^2})$ 就可以知道,这是一个整函数(全平面解析,除了无穷远点没有极点),而且所有零点在半整数,次数为1 由此我们就可以知道这个函数同$cos(\pi z)$的所有零点相同,也就是这个无穷乘积必然形如 $exp(h(z))cos(\pi z)$,其中$h(z)$是一个解析函数。但是这里这个$h(z)$如何计算我忘了,而这里根据查表结果得出是一个常数函数。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-10-30 11:31:36 | 显示全部楼层
本帖最后由 wayne 于 2009-10-30 11:37 编辑 13# mathe 根据你给的信息,对比一下: h(z)===0 再根据“数学星空”的解法:
截图00.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-10-30 11:50:01 | 显示全部楼层
呵呵,因为mathe给出的是余弦函数的无穷乘积表达式,而你需要求的是有限乘积,所以结果有差异, 利用公式$Gamma(1/2+n)={(2*n-1)!!}/{2^n}*sqrt(pi)$ $Gamma(1/2-n)={(-1)^n*2^n}/{(2*n-1)!!}*sqrt(pi)$ $Gamma(n)*Gamma(1-n)=pi/{sin(pi*n) } $ $Gamma(1/2)=sqrt(pi)$ 可以对表达式进行化简
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-10-30 13:58:10 | 显示全部楼层
请问6楼的r代表什么,是r分布函数?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-10-30 14:09:36 | 显示全部楼层
$Gamma(s)=int_0^inftyx^(s-1)*e^(-x)dx" where "(s>0)$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-10-30 14:11:42 | 显示全部楼层
通常也称为欧拉积分或者欧拉函数
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-10-30 14:48:48 | 显示全部楼层
15# 数学星空 怪我没说清楚 我根据你的思路给出了有限乘积的表达式,只是为了说明无穷乘积的表达式的那个h(z)=0
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-10-30 14:54:58 | 显示全部楼层
本帖最后由 wayne 于 2009-10-30 14:58 编辑 16# 〇〇 那r不是r,是希腊字母$\Gamma$ 我们可以理解为是阶乘的一种实数范围的推广形式, 将17楼的欧拉积分归一化后,就是gamma分布了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-30 02:21 , Processed in 0.033141 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表