- 注册时间
- 2012-4-20
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 3059
- 在线时间
- 小时
|
发表于 2023-10-19 14:28:15
|
显示全部楼层
记\( DA = a, DB = b, DC = c \), \({\theta _a}, {\theta _b}, {\theta _c}\)分别表示$DB$与$DC$、$DC$与$DA$、$DA$与$DB$之间的夹角, 则
\[{S_A} = \frac{1}{2}bc\sin {\theta _a}, \quad {S_B} = \frac{1}{2}ca\sin {\theta _b}, \quad {S_C} = \frac{1}{2}ab\sin {\theta _c}\]
又令\[k = \sqrt {1 - {{\cos }^2}{\theta _a} - {{\cos }^2}{\theta _b} - {{\cos }^2}{\theta _c} + 2\cos {\theta _a}\cos {\theta _b}\cos {\theta _c}} \], 有
\[V = \frac{1}{6}abck\]
以上联立, 可解出
\[a = \frac{{3V\sin {\theta _a}}}{{k{S_A}}}, \quad b = \frac{{3V\sin {\theta _b}}}{{k{S_B}}}, \quad c = \frac{{3V\sin {\theta _c}}}{{k{S_C}}}\]
代回$V$的表示, 又有
\[9{V^2} = \frac{{2{k^2}{S_A}{S_B}{S_C}}}{{\sin {\theta _a}\sin {\theta _b}\sin {\theta _c}}}\]
三角形$ABC$ 的各边边长平方为:
\[\begin{array}{l}
A{B^2} = {a^2} + {b^2} - 2ab\cos {\theta _c} = \frac{{9{V^2}}}{{{k^2}}}\left( {\frac{{{{\sin }^2}{\theta _a}}}{{{S_A}^2}} + \frac{{{{\sin }^2}{\theta _b}}}{{{S_B}^2}} - 2\frac{{\sin {\theta _a}\sin {\theta _b}}}{{{S_A}{S_B}}}\cos {\theta _c}} \right) \\
B{C^2} = {b^2} + {c^2} - 2bc\cos {\theta _a} = \frac{{9{V^2}}}{{{k^2}}}\left( {\frac{{{{\sin }^2}{\theta _b}}}{{{S_B}^2}} + \frac{{{{\sin }^2}{\theta _c}}}{{{S_C}^2}} - 2\frac{{\sin {\theta _b}\sin {\theta _c}}}{{{S_B}{S_C}}}\cos {\theta _a}} \right) \\
C{A^2} = {c^2} + {a^2} - 2ca\cos {\theta _b} = \frac{{9{V^2}}}{{{k^2}}}\left( {\frac{{{{\sin }^2}{\theta _c}}}{{{S_C}^2}} + \frac{{{{\sin }^2}{\theta _a}}}{{{S_A}^2}} - 2\frac{{\sin {\theta _c}\sin {\theta _a}}}{{{S_C}{S_A}}}\cos {\theta _b}} \right) \\
\end{array}\]
由海伦公式
\[{S_D}^2 = \frac{1}{{16}}\left( {4A{B^2}B{C^2} - \left( {A{B^2} + B{C^2} - C{A^2}} \right)} \right) \]
将得到$V$关于\({\theta _a}, {\theta _b}, {\theta _c}\)的另一等式. 与前面的式子联合消元$V$得到约束条件
\[{S_D}^2 = S_A^2 + S_B^2 + S_C^2 + 2\frac{{\cos {\theta _a}\cos {\theta _b} - \cos {\theta _c}}}{{\sin {\theta _a}\sin {\theta _b}}}{S_A}{S_B} + 2\frac{{\cos {\theta _b}\cos {\theta _c} - \cos {\theta _a}}}{{\sin {\theta _b}\sin {\theta _c}}}{S_B}{S_C} + 2\frac{{\cos {\theta _c}\cos {\theta _a} - \cos {\theta _b}}}{{\sin {\theta _c}\sin {\theta _a}}}{S_C}{S_A}\]
即求解目标为,在此约束条件下,求下式的极值:
\[9{V^2} = \frac{{2(1 - {{\cos }^2}{\theta _a} - {{\cos }^2}{\theta _b} - {{\cos }^2}{\theta _c} + 2\cos {\theta _a}\cos {\theta _b}\cos {\theta _c}){S_A}{S_B}{S_C}}}{{\sin {\theta _a}\sin {\theta _b}\sin {\theta _c}}}\]
|
|