找回密码
 欢迎注册
查看: 74439|回复: 22

[求助] 如何过抛物线上一点作出它的切线

[复制链接]
发表于 2009-11-15 12:54:06 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
在用几何画板模拟凸透镜对光线的汇聚作用时遇到这么个问题。 已知抛物线的焦点F和准线l,直线AB,如何过AB与抛物线的交点,尺规作图作出抛物线的切线? 找到了作交点的方法:http://www.docin.com/p-9746735.html 不知切线怎么作出,望各位大侠指教。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-11-15 22:42:43 | 显示全部楼层
不明白这里的直线AB起什么作用。 已知抛物线及其上的一点P,作该点P处的切线,倒有一个很简单的方法。 连接该点P与抛物线的顶点O,在抛物线的对称轴上异于焦点的一侧取一点Q,使得该点到顶点的距离OQ等于OP,那么,直线PQ即是你要的切线
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-11-16 17:32:16 | 显示全部楼层
有了wanye前面的方法,那么我们只需要找到直线AB和抛物线的交点就可以了。 也就是相当于在直线AB上找一点C,它到F和直线l的距离相等。或者说做一个圆,圆心在AB上,同l相切,还要过F点。做l关于AB的对称直线l',那么相当于做以圆过F点并且同时同l和l'相切,这个挺容易的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-11-17 09:31:21 | 显示全部楼层
本帖最后由 wayne 于 2009-11-17 10:05 编辑 不好意思啊,2楼我是凭记忆说的。其实错了。 应该是这样的: 设抛物线焦点为F,对称轴上异于焦点一侧的点Q,抛物线上的一点P,如果FP=FQ,那么PQ是抛物线上P点处的切线 2009-11-17_10-05-00.png

评分

参与人数 1鲜花 +2 收起 理由
gxqcn + 2 图像表达更直观

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-11-17 11:37:28 | 显示全部楼层
计算一下,假设$P(x_0,y_0)$,抛物线方程$y^2=2px$ 那么切线PQ的方程为$y_0y=px_0+px$,所以Q点坐标为$(-x_0,0)$ 所以$QF=x_0+p/2$,同样$PF=sqrt((x_0-p/2)^2+y_0^2)=sqrt((x_o-p/2)^2+2px_0)=x_0+p/2$ 所以QF=PF。 不过我们也可以采用另外一个策略,$OQ=x_0$正好时OP在对称轴上投影的长度。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-11-17 20:11:16 | 显示全部楼层
都忘了抛物线还有焦点一说,查了一下才记起来, 抛物线是离心率为1的曲线, 不知道怎么的还是习惯`2py=x^2`的写法, 假设抛物线上点`(a,a^2/{2p})`,根据对抛物线求导得到切点斜率`a/p` 求到切线方程`y=ax/p-a^2/{2p}` 于y交点坐标`(0,-a^2/{2p})` 可以发现坐标间的关系。 发现math计算过程简单不少。。。 想起了以前碰到的一个事情,跟这个本质一样的, 原点是抛物线上一点做垂线和切线与y轴交点的中点,当时很是惊讶。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-11-17 22:03:01 | 显示全部楼层
本帖最后由 jiaon 于 2009-11-17 22:14 编辑 感谢各位。 作出切线后,模拟了一下凸透镜对光的汇聚情况,结果无论透镜表面是球面还是旋转抛物面,都不能把平行于主光轴的光线汇聚到一点。只有光线距离主轴比较近的时候近似汇聚到一点。 凸透镜.GIF 移动KA,那个c点是动的。 经试验,旋转抛物面的凹面镜可以把平行于主轴的光汇聚到一点,那么什么样的旋转曲面做的凸透镜才能把光汇聚到一点?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-11-18 09:15:02 | 显示全部楼层
6# winxos 我印象中教科书的写法都是x^2=2py;y^2=2px的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-11-18 09:17:51 | 显示全部楼层
感谢各位。 作出切线后,模拟了一下凸透镜对光的汇聚情况,结果无论透镜表面是球面还是旋转抛物面,都不能把平行于主光轴的光线汇聚到一点。只有光线距离主轴比较近的时候近似汇聚到一点。 1387 移动KA,那个c点是 ... jiaon 发表于 2009-11-17 22:03
明白了楼主的意思了。 看来这题还是蛮有趣的。 只是透镜的要比曲面镜的复杂得多,因为光路图里面有两次折射
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-11-18 09:25:01 | 显示全部楼层
凸透镜的宽这个参数我们有必要考虑进来。 用解析几何的知识,把光路图的每个细节表达一下, 以角度关系来列等式估计要简单一些, 最后的核心就是C的横坐标值不依赖于A点纵坐标的改变而改变
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-24 02:21 , Processed in 0.025734 second(s), 20 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表