- 注册时间
- 2009-2-12
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 22688
- 在线时间
- 小时
|
发表于 2024-4-26 10:41:32
|
显示全部楼层
mathe的解答过程,我重新整理一下,使得更清晰. 然后, 我们再尝试推导一下$a^n+b^n+c^n$的值
设$e_1=a+b+c, e_2=ab+bc+ca, e_3=abc$,那么$p_n=a^n+b^n+c^n$可以用$e_1,e_2,e_3$ 表达出来. 然后我们先处理一下初始条件:$p_1=e_1, p_2=0,p_3=0, p_4= 2p_2^2-2e_2$
由 $p_2 = e_1^2-2 e_2 = 0, p_3 =e_1^3-3 e_2 e_1+3 e_3 = 0$得到$e_2 = \frac{e_1^2}{2},e_3 =\frac{e_1^3}{6}$ , 代入$ p_4 = e_1^4-4 e_2 e_1^2+4 e_3 e_1+2 e_2^2 = 2p_2^2-2e_2$ 可以得到$e_1^2+6=0$, 好了,初始条件处理完毕, 按下不表.
继续, $p_n=a^n+b^n+c^n = f(e_1,e_2,e_3)$,而 $f(e_1,e_2,e_3)$的项 是方程 $e_1+2e_2+3e_3=n$的非负整数解. 至于系数好像有点难度, 只能靠递推了? [这个节外生枝,跟本题无关]
- Table[{n,First[SymmetricReduction[PowerSymmetricPolynomial[n,{a,b,c}],{a,b,c},{Subscript[e, 1],Subscript[e, 2],Subscript[e, 3]}]]},{n,10}]
复制代码
\[\begin{array}{l}
\left\{1,e_1\right\} \\
\left\{2,e_1^2-2 e_2\right\} \\
\left\{3,e_1^3-3 e_2 e_1+3 e_3\right\} \\
\left\{4,e_1^4-4 e_2 e_1^2+4 e_3 e_1+2 e_2^2\right\} \\
\left\{5,e_1^5-5 e_2 e_1^3+5 e_3 e_1^2+5 e_2^2 e_1-5 e_2 e_3\right\} \\
\left\{6,e_1^6-6 e_2 e_1^4+6 e_3 e_1^3+9 e_2^2 e_1^2-12 e_2 e_3 e_1-2 e_2^3+3 e_3^2\right\} \\
\left\{7,e_1^7-7 e_2 e_1^5+7 e_3 e_1^4+14 e_2^2 e_1^3-21 e_2 e_3 e_1^2-7 e_2^3 e_1+7 e_3^2 e_1+7 e_2^2 e_3\right\} \\
\left\{8,e_1^8-8 e_2 e_1^6+8 e_3 e_1^5+20 e_2^2 e_1^4-32 e_2 e_3 e_1^3-16 e_2^3 e_1^2+12 e_3^2 e_1^2+24 e_2^2 e_3 e_1+2 e_2^4-8 e_2 e_3^2\right\} \\
\left\{9,e_1^9-9 e_2 e_1^7+9 e_3 e_1^6+27 e_2^2 e_1^5-45 e_2 e_3 e_1^4-30 e_2^3 e_1^3+18 e_3^2 e_1^3+54 e_2^2 e_3 e_1^2+9 e_2^4 e_1-27 e_2 e_3^2 e_1+3 e_3^3-9 e_2^3 e_3\right\} \\
\left\{10,e_1^{10}-10 e_2 e_1^8+10 e_3 e_1^7+35 e_2^2 e_1^6-60 e_2 e_3 e_1^5-50 e_2^3 e_1^4+25 e_3^2 e_1^4+100 e_2^2 e_3 e_1^3+25 e_2^4 e_1^2-60 e_2 e_3^2 e_1^2+10 e_3^3 e_1-40 e_2^3 e_3 e_1-2 e_2^5+15 e_2^2 e_3^2\right\} \\
\end{array}\]
通过肉眼观察+Mathematica代码验证,发现 $p_n=a^n+b^n+c^n = f(e_1,e_2,e_3) = n*\sum_{{x_1,x_2,x_3}}\frac{(-1)^{x_2}*(x_1+x_2+x_3-1)!}{x_1! x_2! x_3!}* e_1^{x_1}e_2^{x_2}e_3^{x_3}$,其中${x_1,x_2,x_3}$遍历 方程$e_1+2e_2+3e_3=n$的所有非负整数解${x_1,x_2,x_3}$.
- Clear[p];{p[1],p[2],p[3]} = Table[First[SymmetricReduction[PowerSymmetricPolynomial[i,{a,b,c}],{a,b,c},{Subscript[e, 1],Subscript[e, 2],Subscript[e, 3]}]],{i,3}];
- pool=Table[If[k<4,p[k],p[k]=Expand[Sum[(-1)^(k+i-1) Subscript[e,k-i]p[i],{i,k-3,k-1}]]],{k,100}];sol=Table[{a,b,offset={a,b}.{2,3},FullSimplify[(-1)^a n Binomial[a+b,a]/(a+b) Binomial[n-(a+2b+1),n-(2a+3b)]-Block[{e23={a,b},offset},offset=e23.{2,3};Factor[FindSequenceFunction[Table[Association[CoefficientRules[pool[[n]]]][{n-offset,e23[[1]],e23[[2]]}],{n,offset+1,offset+20}],n]]/.n->(n-offset)]]},{a,0,10},{b,1,10}]
复制代码
我还以为这个是我的原创了,后来发现Wikipedia上已经有这个公式了, https://en.wikipedia.org/wiki/Newton%27s_identities
- With[{n=134},Total[n Function[{x,y,z},(-1)^y Multinomial[x,y,z]/(x+y+z) Subscript[e, 1]^x Subscript[e, 2]^y Subscript[e, 3]^z]@@@SolveValues[x+2y+3z==n&&x>=0&&y>=0&&z>=0,{x,y,z},Integers]]]
复制代码
|
|