找回密码
 欢迎注册
查看: 422|回复: 14

[猜想] π和e的等位序列

[复制链接]
发表于 2025-3-4 23:07:38 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
在1万位内,验证或者推翻下面这张图片的猜想:平均每隔10位数,π值和e值会有一个数字相同。
记第 n 个相同位为a(n)——称为π和e的等位序列, 记向前差分Δa(n)=a(n+1)-a(n), 猜想是说 $lim_{n→∞}E(Δa)≤10$
数字相同.JPG
以下是比较前100位得到的等位序列的一个前段:
a(n)={13, 17, 18, 21, 34, 40, 45, 56, 59, 70, 81, 95, 100}
Δa(n)={4, 1, 3, 13, 6, 5, 11, 3, 11, 11, 14, 5}
我的猜想1: Δa(n)可以无穷大,并不是每隔10个左右就相同一次。
谁能率先找到Δa(n)=30的项。

猜想2:相同的数字中,9的出现率最高,或者能达到50%?

点评

间隔可以无穷大与平均间隔≤10不矛盾。  发表于 2025-3-4 23:23
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2025-3-5 06:59:59 | 显示全部楼层
A052055 Positions in both Pi and e indicate a common digit.

13, 17, 18, 21, 34, 40, 45, 56, 59, 70, 81, 95, 100, 143, 170, 206, 244, 263, 275, 279, 294, 324, 326, 331, 334, 361, 365, 388, 389, 396, 412, 420, 428, 429, 453, 460, 461, 462, 484, 494, 500, 501, 504, 507, 512, 523, 526, 548, 582, 591, 595, 596, 599, 603...
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2025-3-5 07:10:52 | 显示全部楼层
294 <--> 324

Δa(n)={4, 1, 3, 13, 6, 5, 11, 3, 11, 11, 14, 5, 43, 27, 36, 38, 19, 12, 4, 15, 30, 2, 5, 3, 27, 4, 23, 1, 7, 16, 8, 8, 1, 24, 7, 1, 1, 22, 10, 6, 1, 3, 3, 5, 11, 3, 22, 34, 9, 4, 1, 3, 4,...}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2025-3-5 08:23:21 | 显示全部楼层

1000位中找到有100次左右相同的数字,9这个数字出现14次
10万位中找到有9998次相同数字,9这个数字出现了100次
根据以上数据:相同数字0到9的出现频率大致相等,都是在10%左右。
应该不会有其它新猜想成立,比如相同的数字出现在斐波那契数列数位上,等等,这些都不成立。它们都是无理数,无理可讲。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2025-3-5 09:02:25 | 显示全部楼层
数论爱好者 发表于 2025-3-5 08:23
1000位中找到有100次左右相同的数字,9这个数字出现14次
10万位中找到有9998次相同数字,9这个数字出现了 ...

10万位中,最大间隔87,85557-85470=87,出现1次。
大于50以上的比例比较少,总的不到60次。
间隔为1的出现比例很高,1038次,间隔为2的出现926次,以此逐渐减少下去
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2025-3-5 09:12:38 | 显示全部楼层
数论爱好者 发表于 2025-3-5 09:02
10万位中,最大间隔87,85557-85470=87,出现1次。
大于50以上的比例比较少,总的不到60次。
间隔为1的出 ...

据此推断,可以找到两位数相同的数字,即Δa(n)=1的项。找不到3位,4位...更多位相同的数字,即Δa(n)中没有连续出现的 1。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2025-3-5 10:02:27 | 显示全部楼层

加大难度,终结此贴

在 π 中可以找到你身份证号片段,在 e 中也可能找到你的身份证号片段。但在π和e中,这种18位片段的位置不可能相同,绝对不可能。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2025-3-5 11:36:51 | 显示全部楼层
本帖最后由 northwolves 于 2025-3-5 11:39 编辑
数论爱好者 发表于 2025-3-5 09:12
据此推断,可以找到两位数相同的数字,即Δa(n)=1的项。找不到3位,4位...更多位相同的数字,即Δa(n)中没 ...


太武断了,理论上任意长的相同的数字都可能出现,如:
  1. a=RealDigits[Pi,10,1000003][[1]];
  2. b=RealDigits[E,10,1000003][[1]];k=3;x3=Select[Range@1000000,Take[a,{#-1,#+k-1}]==Take[b,{#-1,#+k-1}]&]
  3. k=4;x4=Select[Range@1000000,Take[a,{#-1,#+k-1}]==Take[b,{#-1,#+k-1}]&]
复制代码


相同四位数出现位置:
{6425,19384,26550,26551,30744,33771,37239,60139,69950,72686,78655,84394,84395,86426,92288,108427,108908,127811,133746,146382,155331,188780,218715,224016,251862,265364,269785,269786,286666,300193,303003,303004,311266,323592,332811,332849,335798,336465,345021,363996,363997,372924,373485,375068,376583,381493,389644,437703,438707,450865,455440,456271,475908,482851,483485,489929,495006,504908,520741,529764,535783,538008,546634,552108,559882,590782,595451,595452,604727,604728,608641,632360,637457,637458,671950,672895,672896,676662,694514,698157,730781,744841,749857,753067,755659,765477,769034,769035,819140,868539,870409,871066,890296,892013,897401,918723,939811,953918,955239,960790,983944,983945,984067,987482,995416}

相同五位数出现位置:
{26550,84394,269785,303003,363996,595451,604727,637457,672895,769034,983944}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2025-3-5 11:39:51 | 显示全部楼层
五位数:{{26550,{8,2,0,1,4},{8,2,0,1,4}},{84394,{3,9,7,9,7},{3,9,7,9,7}},{269785,{0,0,0,9,3},{0,0,0,9,3}},{303003,{5,4,2,6,5},{5,4,2,6,5}},{363996,{3,6,6,6,6},{3,6,6,6,6}},{595451,{8,4,1,7,8},{8,4,1,7,8}},{604727,{2,4,4,9,9},{2,4,4,9,9}},{637457,{0,2,0,2,1},{0,2,0,2,1}},{672895,{3,7,2,9,1},{3,7,2,9,1}},{769034,{2,2,2,1,0},{2,2,2,1,0}},{983944,{9,5,5,9,3},{9,5,5,9,3}}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2025-3-5 11:40:59 | 显示全部楼层
四位数:
{{6425,{0,2,1,3},{0,2,1,3}},{19384,{4,8,3,3},{4,8,3,3}},{26550,{8,2,0,1},{8,2,0,1}},{26551,{2,0,1,4},{2,0,1,4}},{30744,{5,1,8,4},{5,1,8,4}},{33771,{1,2,8,0},{1,2,8,0}},{37239,{8,2,5,7},{8,2,5,7}},{60139,{4,3,3,6},{4,3,3,6}},{69950,{5,1,3,2},{5,1,3,2}},{72686,{0,2,2,9},{0,2,2,9}},{78655,{9,6,5,2},{9,6,5,2}},{84394,{3,9,7,9},{3,9,7,9}},{84395,{9,7,9,7},{9,7,9,7}},{86426,{5,1,1,6},{5,1,1,6}},{92288,{0,7,3,6},{0,7,3,6}},{108427,{2,8,4,5},{2,8,4,5}},{108908,{7,6,2,2},{7,6,2,2}},{127811,{0,4,1,7},{0,4,1,7}},{133746,{2,9,0,1},{2,9,0,1}},{146382,{8,3,0,7},{8,3,0,7}},{155331,{3,7,1,3},{3,7,1,3}},{188780,{9,5,5,6},{9,5,5,6}},{218715,{8,1,9,7},{8,1,9,7}},{224016,{0,4,1,2},{0,4,1,2}},{251862,{0,2,9,7},{0,2,9,7}},{265364,{4,0,4,6},{4,0,4,6}},{269785,{0,0,0,9},{0,0,0,9}},{269786,{0,0,9,3},{0,0,9,3}},{286666,{1,3,2,5},{1,3,2,5}},{300193,{0,5,4,3},{0,5,4,3}},{303003,{5,4,2,6},{5,4,2,6}},{303004,{4,2,6,5},{4,2,6,5}},{311266,{1,5,3,4},{1,5,3,4}},{323592,{9,8,1,1},{9,8,1,1}},{332811,{3,2,9,7},{3,2,9,7}},{332849,{3,2,2,6},{3,2,2,6}},{335798,{3,2,5,8},{3,2,5,8}},{336465,{6,3,2,0},{6,3,2,0}},{345021,{3,5,9,1},{3,5,9,1}},{363996,{3,6,6,6},{3,6,6,6}},{363997,{6,6,6,6},{6,6,6,6}},{372924,{3,1,6,2},{3,1,6,2}},{373485,{5,5,3,1},{5,5,3,1}},{375068,{2,0,6,9},{2,0,6,9}},{376583,{8,1,8,6},{8,1,8,6}},{381493,{5,1,2,9},{5,1,2,9}},{389644,{5,2,5,1},{5,2,5,1}},{437703,{9,5,3,0},{9,5,3,0}},{438707,{6,0,8,3},{6,0,8,3}},{450865,{2,6,1,9},{2,6,1,9}},{455440,{8,1,7,0},{8,1,7,0}},{456271,{7,6,4,7},{7,6,4,7}},{475908,{6,5,9,5},{6,5,9,5}},{482851,{1,8,8,0},{1,8,8,0}},{483485,{7,5,9,1},{7,5,9,1}},{489929,{0,6,5,8},{0,6,5,8}},{495006,{9,7,7,5},{9,7,7,5}},{504908,{1,8,8,7},{1,8,8,7}},{520741,{5,6,8,1},{5,6,8,1}},{529764,{9,5,4,9},{9,5,4,9}},{535783,{4,8,8,3},{4,8,8,3}},{538008,{4,0,5,3},{4,0,5,3}},{546634,{2,9,7,3},{2,9,7,3}},{552108,{7,0,4,9},{7,0,4,9}},{559882,{1,6,9,5},{1,6,9,5}},{590782,{0,9,2,4},{0,9,2,4}},{595451,{8,4,1,7},{8,4,1,7}},{595452,{4,1,7,8},{4,1,7,8}},{604727,{2,4,4,9},{2,4,4,9}},{604728,{4,4,9,9},{4,4,9,9}},{608641,{6,4,4,6},{6,4,4,6}},{632360,{8,5,7,3},{8,5,7,3}},{637457,{0,2,0,2},{0,2,0,2}},{637458,{2,0,2,1},{2,0,2,1}},{671950,{5,5,5,2},{5,5,5,2}},{672895,{3,7,2,9},{3,7,2,9}},{672896,{7,2,9,1},{7,2,9,1}},{676662,{9,2,7,6},{9,2,7,6}},{694514,{7,8,8,0},{7,8,8,0}},{698157,{9,8,3,0},{9,8,3,0}},{730781,{0,7,8,9},{0,7,8,9}},{744841,{1,7,2,4},{1,7,2,4}},{749857,{4,6,1,2},{4,6,1,2}},{753067,{3,8,8,5},{3,8,8,5}},{755659,{6,2,0,4},{6,2,0,4}},{765477,{2,7,0,2},{2,7,0,2}},{769034,{2,2,2,1},{2,2,2,1}},{769035,{2,2,1,0},{2,2,1,0}},{819140,{7,4,3,2},{7,4,3,2}},{868539,{0,9,4,1},{0,9,4,1}},{870409,{7,7,0,4},{7,7,0,4}},{871066,{1,2,7,3},{1,2,7,3}},{890296,{7,6,4,6},{7,6,4,6}},{892013,{8,1,0,8},{8,1,0,8}},{897401,{2,9,2,4},{2,9,2,4}},{918723,{7,4,7,8},{7,4,7,8}},{939811,{3,0,9,4},{3,0,9,4}},{953918,{8,1,9,1},{8,1,9,1}},{955239,{8,4,4,4},{8,4,4,4}},{960790,{0,1,3,2},{0,1,3,2}},{983944,{9,5,5,9},{9,5,5,9}},{983945,{5,5,9,3},{5,5,9,3}},{984067,{2,0,8,1},{2,0,8,1}},{987482,{0,9,7,5},{0,9,7,5}},{995416,{0,3,3,3},{0,3,3,3}}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-3-22 16:19 , Processed in 0.061902 second(s), 23 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表