找回密码
 欢迎注册
查看: 46981|回复: 22

[分享] 鬼谷子难题

[复制链接]
发表于 2010-3-4 10:30:58 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
本帖最后由 wayne 于 2010-3-4 11:43 编辑 这道题很耐人琢磨,希望不知道的不要轻易上网搜索。。。
孙膑,庞涓都是鬼谷子的徒弟;一天鬼从2到99中选出两个不同的整数,把和告诉庞,把积告诉孙。 庞说:我虽然不能确定这两个数是什么,但是我肯定你也不知道这两个数是什么。 孙说:我本来的确不知道,但是听你这么一说,我现在能够确定这两个数字了。 庞说:既然你这么说,我现在也知道这两个数字是什么了。
请各位看官根据他们的对话给出这两个神秘的数来
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-3-4 11:14:20 | 显示全部楼层
这道题的答案按楼主的意思是没有了,因为知道的人不能说答案啊
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-3-4 11:43:38 | 显示全部楼层
我改过来了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-3-4 12:23:16 | 显示全部楼层
答案是3和14。 如果把2到99该为3到128你能正确解答,则能体验这个问题实质性东西 大家不妨试试,是否能正确找到3到128的解答
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-3-5 02:44:12 | 显示全部楼层
是4和13 吧
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-3-6 00:05:52 | 显示全部楼层
本帖最后由 hujunhua 于 2010-3-6 00:20 编辑 孙膑, 庞涓都是鬼谷子的徒弟;一天鬼从2到128中选出两个不同的整数, 把和告诉庞, 把积告诉孙。 庞说:我虽然不能确定这两个数是什么, 但是我肯定你也不知道这两个数是什么。 孙说:我本来的确不知道, 但是听你这么一说, 我现在能够确定这两个数字了。 庞说:既然你这么说, 我现在也知道这两个数字是什么了。 胡子说: 假定这两个数是a和b, 且2≤a<b≤128, 记s=a+b, p=ab 记S(n)={xy|x+y=n, 2≤x<y≤128},即由两数之和推断两数之积的范围 P(n)={x+y|xy=n, 2≤x<y≤128},即由两数之积推断两数之和的范围 庞、孙若能再知道对方的数,就能从一元二次方程x2-sx+p还原(a,b)。 1、一开始庞不能确定p, 孙不能确定s, 皆因|S(s)|≥2,|P(p)|≥2. 2、庞能肯定孙不知s, 说明对任意xy∈S(s),均有|P(xy)|≥2。所以我们和孙可得 〖推论1〗s<69。因为[64, 128]内有素数{67, 71, …, 113, 127},若69≤s≤253, S(s)中必存在x或y在这段素数中的解,而此时P(xy)=1. 〖推论2〗(a, b)不是素数对。进而知 s 必非偶数(小偶数哥德巴赫定理)和(2+prime)。现在可推断的 s 取值范围只剩下 Rest={11, 17, 23, 27, 29, 35, 37, 41, 47, 51, 53, 57, 59, 65, 67}。 3、孙得知Rest后即可确定s, 当且仅当|P(p)∩Rest|=1. 4、庞能从孙的反馈得知 p,说明S(s)中仅有1个p满足P(p)∩Rest={s}. 〖引理1〗 若s∈Rest且s=2k+prime, k>1, 则P(2kprime)∩Rest={s}. 证:因P(2kprime)中除了2k+prime=s这一项,其它皆是偶数,故P(2kprime)∩Rest={s}. 〖引理2〗 若s∈Rest且s=32+odd, 则P(32*odd)∩Rest={s}. 证:因P(32*odd)中除32+odd=s这项, 其它奇数项>3*32=96, 故P(32*odd)∩Rest={s}. 〖推论1〗Rest中能同时表示为2k+prime(k>1, k≠5)和32+odd的数都可以淘汰。35以上的奇数都可依此条删去。还剩{11, 17, 23, 27, 29}. 〖推论2〗Rest中能以两种方式表为2k+prime(k>1)的数都可以淘汰。包括 11=4+7=8+3, 23=4+19=16+7, 27=4+23= 8+19 还剩下{17,29},逐个检验。 5、S(17)={2*15, 3*14, 4*13, 5*12, 6*11, 7*10, 8*9} P(2*15)={2+15,3+10,5+6}, P(30)∩Rest={17,11} P(3*14)={3+14, 2+21, 6+7}, P(42)∩Rest={17,23} P(4*13)={4+13, 2+26}, P(52)∩Rest={17}(亦可由引理1直接得到此结果) P(5*12)={5+12, 2+30, 3+20, 4+15, 6+10}, ∩={17,23} P(6*11)={6+11, 3+22, 2+33}, ∩={17,35} P(7*10)={7+10, 2+35, 5+14}, ∩={17,37} P(8*9)={8+9, 3+24, rest evens}, ∩={17,27} 可见S(17)中只有52满足P(p)∩Rest={17},故庞最后可知p=52, a=4, b=13为一解。 6、S(29)={2*27,3*26,4*25,…,14*15} P(2*27)={2+27, 6+9, 18+3}, P(54)∩Rest={29} P(16*13)∩Rest={29}(由引理1得) 可见29也可以删去。以此为例解释一下第4条。假如孙得知的p=54, 他由P(54)∩Rest={29}即可确定s=29。庞知道的s=29, 但他发现从S(29)中选p=54或者208,都能确定s=29,所以庞就不知道孙是从其中哪个数得到s=29的,因此仍然无法确定p. 最后结论:庞涓知道的和是17,孙膑知道的积是52,两数为4和13

评分

参与人数 1贡献 +2 经验 +2 收起 理由
winxos + 2 + 2

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-3-7 11:48:21 | 显示全部楼层
1# wayne 知识共享, 不确定其实也是会添加一条判断依据,然后确定了又添加了一条判断依据。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-3-7 15:02:26 | 显示全部楼层
本帖最后由 hujunhua 于 2010-3-7 20:02 编辑
2、庞能肯定孙不知s, 说明对任意xy∈S(s),均有|P(xy)|≥2。所以我们和孙可得 〖推论1〗s<69。因为[64, 128]内有素数{67, 71, …, 113, 127},若69≤s≤253, S(s)中必存在x或y在这段素数中的解,而此时P(xy)=1. 〖推论2〗(a, b)不是素数对。进而知 s 必非偶数(小偶数哥德巴赫定理)和(2+prime)。hujunhua 发表于 2010-3-6 00:05
貌似没人认真审查我的解答,因为有小错误没人纠正。就是其中定义的Rest,下文中过滤得不够干净。 Rest={s|∀x+y=s, 2≤x1} 检查发现51和57不在Rest中。因为 51=17+34,P(17*34)=1 59=19+38, P(19*38)=1 也就是说,还该有个推论(3): s≠3prime, 这个prime>sqrt(128)>11. 应该滤干净了吧,好在这个错误不改变结论, 因为S(17)中的任意xy, P(xy)均不含51和57。 关于推论1,关键在于127是素数,这点应该指出,因为127以下的素数不需要。当68126, 超出了选数范围。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-3-8 09:51:27 | 显示全部楼层
楼上得出的结果正确(我在4#误写成3和14),虽然65也不在Rest中。 如果能将2到128改为3到128后推出正确结果(不是4和13 )就更能清楚解决此类问题方法
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-3-8 21:16:39 | 显示全部楼层
65应还在Rest里吧。 选数范围从[2,128]变成[3,128],看似变动微小,实则巨大,Rest完全不同了,答案可能是13,16。 没仔细算,有空再说吧,要出差了。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 01:36 , Processed in 0.026682 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表