找回密码
 欢迎注册
查看: 38729|回复: 13

[讨论] 三个素数

[复制链接]
发表于 2010-7-30 18:02:22 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
2,3,5是最小的三个素数,满足以下条件: 任意两个之积除于第三个,余1. 是否唯一解?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-30 21:23:22 | 显示全部楼层
从概率上讲是不唯一的,有无限组这样的素数。 但这并不能说明问题。 因为可能会推出一些隐含的限制条件,使得这个问题不满足统计规律。 我让$1$个条件成立,找了$100$以内的二十几组素数来算,结果另外$2$个条件从来都没有同时成立过。 你验证到多大范围了? 如果这个问题不满足统计规律,又在小范围内无解,那么就可以得出$2$,$3$,$5$是唯一解的概率接近$1$的结论。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-7-30 23:48:39 | 显示全部楼层
a
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-7-30 23:49:28 | 显示全部楼层
不知有什么理论可以证明没有2,3,5以外的解?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-30 23:50:34 | 显示全部楼层
搜索了30013 以内的所有素数,满足 任意两个之积除于第三个的余数(不限于1)都相等 的,只有 2,3,5 一组。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-31 04:45:34 | 显示全部楼层
这里素数的要求有点超,按照中国剩余定理的要求,只需要三个模两两互素就行了。所以可以选按两两互素来解,先搜索一下吧。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-31 10:01:16 | 显示全部楼层
解唯一,不用搜索了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-7-31 10:59:53 | 显示全部楼层
解唯一,不用搜索了 mathe 发表于 2010-7-31 10:01
mathe怎么证明?应该有个巧妙的证明。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-31 12:17:00 | 显示全部楼层
证明是挺简洁的。 把1当作 `x`, 若`a,b,c`两两互素,由中国剩余定理立得 `1≡ab+bc+ca\pmod{abc}` 即`abc|ab+bc+ca-1` 只要`a,b,c`中最多一个是1,左边次数就不低于右边,那就只有少量、较小的有限个解。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-31 20:49:05 | 显示全部楼层
可设 ab+bc+ac-1=kabc,并且1
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-24 09:21 , Processed in 0.030735 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表