找回密码
 欢迎注册
查看: 118527|回复: 27

[讨论] 球面上的田埂

[复制链接]
发表于 2010-11-25 12:51:10 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
gxqcn老大提出了田埂问题之后,引起了大家的兴趣。我觉得这个问题中包含了某种“结构”(呵呵,我也说不清楚什么叫做“结构”),所以有趣。老大的初始田地是方块和圆形的,其中貌似圆形更“一般”些。我这里想把情况再“一般”一些,所以大家来考虑球上的田埂吧。本应在老大的帖子之上进行讨论,但是貌似里面有一些独立的内容,就开了新贴。
精华

球上田埂问题:将球的表面分为n个区域,每一块的面积都相等,要求区域的分界线最短,问如何划分。(注:假设这里的“面积”定义是清楚的。假设这里的“区域”也可以是不连通的区域,这样“每一块”就是对于区域而言,而不是对于连通的面积而言。)

可以看到,KeyTo9_Fans提出的形成局部田埂最短的条件还是适用的。(圆弧垂直于田地边界这一条不适用了,因为没有田地边界了,呵呵。)hujunhua提出的力学性质也应该是依旧成立的。

关于田埂问题就先说到着吧,附加一个可能相关的问题。呵呵。就是传说中的平面和球面的映射关系。
1.GIF
如图,在平面S上方有一个点L,L和S的距离LO是1,以LO为直径有一个球,假设点L是一个点光源,通过光线,可以将球面上的点和平面上的点一一对应(图中点A和点B是对应的)。对于这个映射:
1、在球面上的一段“圆弧”,对应于平面上的什么图形呢?(保圆弧)
2、在球面上的一个“角”,对应到平面上的角的大小一样么?(保角)

关于Riemann映射,针对于微分几何知识为零的同学,大家对此有没有什么比较“直观”的证明思路呢?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-11-25 18:15:36 | 显示全部楼层
搜索一下“球极映射”会找到有用的资料的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-11-25 18:27:24 | 显示全部楼层
根据保角性,角度等分的性质估计能够保存。但是不知道曲率和为零的条件会转化为什么条件
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-11-25 20:02:50 | 显示全部楼层
球面田梗问题应该有更规则的解。
2等分不用说是两半球,3等分无疑是三瓣桔,4、6、12等分为正多面体,8、20可能不是正多面体。
足球的32张皮(12张5边形,20张6边形)是可以做到面积一样大的,但是如果保持所有的边都是大圆弧,就不是最小解。达到最小解可能要求5边形的边向外鼓一点。

假定最优解的拓扑都是正则图,并且区域都是连通的,那么由F+V-E=2及3V=2E可得
V=2(F-2),  E=3(F-2)
将$2E=3F_3+4F_4+5F_5+6F_6+7F_7+8F_8+...+nF_n$代入上式得
$3F_3+2F_4+F_5=12+F_7+2F_8+...+(n-6)F_n$

5等分, 即F=5,得V=6,E=9, 由
$3F_3+2F_4=12$
$F_3+F_4=5$
解得$F_3=2,  F_4=3$,  结果是个正三棱柱。

7等分,F=7, V=10,E=15,可以假定不存在$F_6$及以上的域,那么由
$3F_3+2F_4+F_5=12$
$F_3+F_4+F_5=7$
解得
1、$F_3=0,  F_4=5,  F_5=2$,  为正五棱柱
2、$F_3=1,  F_4=3,  F_5=3$,  拓扑同构于正方体削去一角
3、$F_3=2,  F_4=1,  F_5=4$,  这个拓扑是什么样的我一时还画不出来
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-11-26 14:04:12 | 显示全部楼层
To 4层:
拓扑耶,真好,呵呵。
第3种情况,即2个三角形、1个四边形、4个五边形貌似是无法围成一个体积的。因为不存在7个顶点且顶点度数分别为3345555的平面图。
还有为什么要假定不存在F6呢?是不是因为在球面上每个顶角都是120度的6边形面积一定趋于零呢。但是我没有想明白当容许边为圆弧(即不是球的大圆)时的情况。呵呵。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-11-27 00:49:01 | 显示全部楼层
还有为什么要假定不存在$F_6$呢?是不是因为在球面上 ...
zgg___ 发表于 2010-11-26 14:04

一般来说, 最优解不会存在两个相邻域有两条邻接边的情况.  所以对于, 如果存在的话, 必是正六棱锥.  但正六棱锥不是正则图.

凭直觉, 我曾认为对于任意大的, 最优解都不会包括以上的域, 所以都会成立


因此, 对于较大的F, 绝大多数的域是.

令人疑惑的是,这么一来,必定会产生大片大片的蜂巢状六边形网。要使其中的每个六边形内角和都保持为720度,其6条边总体上应该是凹进去的, 可是它的一边凹进,对它的邻域来说就是凸出了。直边(大圆弧也)六边形域本来就有角盈,还让其某一边外凸,有点匪夷所思啊!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-11-27 00:52:01 | 显示全部楼层
第3种情况,即2个三角形、1个四边形、4个五边形貌似是无法围成一个体积的。因为不存在7个顶点且顶点度数分别为3345555的平面图。zgg___ 发表于 2010-11-26 14:04
为什么? 7个顶点且顶点度数分别为3345555会包括K33或者K5吗?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-12-5 09:20:50 | 显示全部楼层
要用凸多边形围成一个体积,任意两个多边形只能共用一条边,同一个多边形不能与自身共边,这样,4个五边形共20条边,两两共边后剩12条边,再分别与1个四边形共边后还剩下8条边,而2个三角形只有6条边,所以不能形成封闭图形。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-12-20 15:00:11 | 显示全部楼层
直接来讨论最简单的情况吧,定义“球面等压多面体”为单位球上的“多面体”,且: 1、所有的边都是球面直线,即球面大圆的一部分,且0<长度
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-12-27 14:03:57 | 显示全部楼层
又找到了一个,如图,它由4个四边形和4个五边形(五边形的5个顶点不共面)构成,4个五边形连成一个圈,将4个四边形分为两组,每组两个。这样,现在总共就有8种了。
1.GIF
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-23 17:49 , Processed in 0.033105 second(s), 19 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表