找回密码
 欢迎注册
查看: 51532|回复: 13

[求助] 变色次数的期望值

[复制链接]
发表于 2011-1-1 17:28:48 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
设有m个黑球,n个白球,m<=n,将这些球排成一行,计算颜色改变次数的期望值。即计算颜色平均改变了多少次? 注意:当相邻两个球的颜色一致时,我们说颜色没有改变。颜色不一致时,则变色次数增加1。 只考虑一个方向。 比如2黑3白,可以由如下一种排法, 白黑黑白白 变色次数是2,不管你是正着数还是倒着数。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-1-1 18:58:28 | 显示全部楼层
我算的颜色改变次数的期望值F= $(\sum_{k=1}^m{2*(n+m-1)*C_{n-1}^(k-1)*C_{m-1}^(k-1)})/(\sum_{k=1}^m{(n+m)/k*C_{n-1}^(k-1)*C_{m-1}^(k-1)})$ 谁能化简一下。 ---------------------------------- 具体数值 m,n F 1,1 1 1,2 4/3 2,2 2 2,3 2.4 3,3 3
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-1-1 21:30:52 | 显示全部楼层
上述式子化简后是否等于 $(2 * m * n) / (m + n)$. 检查了一些特殊的m、n,两式都相等
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-1-2 13:22:53 | 显示全部楼层
化简: $(\sum_{k=1}^m{2*(n+m-1)*C_{n-1}^(k-1)*C_{m-1}^(k-1)})/(\sum_{k=1}^m{(n+m)/k*C_{n-1}^(k-1)*C_{m-1}^(k-1)})$ =$2*(n+m-1)/{(n+m)/n}*(\sum_{k=1}^m{C_{n-1}^(k-1)*C_{m-1}^(k-1)})/(\sum_{k=1}^m{C_{n}^(k)*C_{m-1}^(k-1)})$ $ (1+x)^(n-1) * (x+1)^(m-1)$ 的展开项乘积后的x^(m-1)项的系数=$\sum_{k=1}^m{C_{n-1}^(k-1)*C_{m-1}^(k-1)}$ 而(1+x)^(n+m-2) 的展开项x^(m-1)项的系数=$C_{n+m-2}^(m-1)$ 而两者是相等的。 同理利用$ (1+x)^n*(x+1)^(m-1)$ 的展开项得: $ \sum_{k=1}^m{C_{n}^(k)*C_{m-1}^(k-1)}=C_{n+m-1}^m$ ---------------------------------- 代入原式化简得$2*(n+m-1)*n/(n+m)*C_{n+m-2}^(m-1)/C_{n+m-1}^m$ =$(2*n*m)/(m+n)$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-1-2 22:59:17 | 显示全部楼层
能否解释一下你的式子的意义。 但是,我感觉您的答案不对。 这题,要先得到变色次数为k时的排列个数,然后求期望值。 当然,排列的总个数是(m+n)!。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-1-2 23:01:23 | 显示全部楼层
比如,K=1时,有两种排法。 全黑接全白; 全白接全黑。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-1-2 23:36:10 | 显示全部楼层
2楼的计算公式,分子就是不同的变色次数乘以相应排列数的和,分母就是所有的排列数。 比如:m=2,n=3 k=1 白白白黑黑,黑黑白白白 k=2 白白黑黑白,白黑黑白白,黑白白白黑 k=3 白白黑白黑,白黑白白黑,黑白白黑白,黑白黑白白 k=4 白黑白黑白 总排列数=2+3+4+1=10 变色次数期望=(1*2+2*3+3*4+4*1)/10=2.4
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-1-4 09:23:55 | 显示全部楼层
是我错了。这是有重复元素的排列。总的排列数不是(m+n)!。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-1-4 09:25:38 | 显示全部楼层
总的排列数应是(m+n)!/(m!*n!)。 =C(m+n,m)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-1-4 09:28:16 | 显示全部楼层
再次请求,能否解释一下你的式子的意义。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 ) 苏公网安备 32050802010130号|Feed|第6321天

GMT+8, 2025-4-15 20:41 , Processed in 0.038944 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表