找回密码
 欢迎注册
楼主: liexi20101117

[讨论] 关于自守数

[复制链接]
发表于 2011-6-10 16:32:00 | 显示全部楼层
wayne你抢我买卖 似乎n次幂的自守数,和n的素因子分解有关系啊
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-6-10 16:36:45 | 显示全部楼层
最后一个101的, 竟然有909个 Prelude> stepSP 101 6 [(6,0),(6,1),(6,1249),(6,2943),(6,4193),(6,5807),(6,7057),(6,8751),(6,9999),(6,1 0001),(6,10624),(6,11249),(6,12943),(6,13568),(6,14193),(6,15807),(6,17057),(6,1 8751),(6,19999),(6,20001),(6,21249),(6,22943),(6,24193),(6,25807),(6,26432),(6,2 7057),(6,28751),(6,29376),(6,29999),(6,30001),(6,31249),(6,32943),(6,34193),(6,3 5807),(6,37057),(6,38751),(6,39999),(6,40001),(6,41249),(6,42943),(6,44193),(6,4 5807),(6,47057),(6,48751),(6,49999),(6,50001),(6,50624),(6,51249),(6,52943),(6,5 3568),(6,54193),(6,55807),(6,57057),(6,58751),(6,59999),(6,60001),(6,61249),(6,6 2943),(6,64193),(6,65807),(6,66432),(6,67057),(6,68751),(6,69376),(6,69999),(6,7 0001),(6,71249),(6,72943),(6,74193),(6,75807),(6,77057),(6,78751),(6,79999),(6,8 0001),(6,81249),(6,82943),(6,84193),(6,85807),(6,87057),(6,88751),(6,89999),(6,9 0001),(6,90624),(6,91249),(6,92943),(6,93568),(6,94193),(6,95807),(6,97057),(6,9 8751),(6,99999),(6,100001),(6,101249),(6,102943),(6,104193),(6,105807),(6,106432 ),(6,107057),(6,108751),(6,109375),(6,109376),(6,109999),(6,110001),(6,111249),( 6,112943),(6,114193),(6,115807),(6,117057),(6,118751),(6,119999),(6,120001),(6,1 21249),(6,122943),(6,124193),(6,125807),(6,127057),(6,128751),(6,129999),(6,1300 01),(6,130624),(6,131249),(6,132943),(6,133568),(6,134193),(6,135807),(6,137057) ,(6,138751),(6,139999),(6,140001),(6,140625),(6,141249),(6,142943),(6,144193),(6 ,145807),(6,146432),(6,147057),(6,148751),(6,149376),(6,149999),(6,150001),(6,15 1249),(6,152943),(6,154193),(6,155807),(6,157057),(6,158751),(6,159999),(6,16000 1),(6,161249),(6,162943),(6,164193),(6,165807),(6,167057),(6,168751),(6,169999), (6,170001),(6,170624),(6,171249),(6,172943),(6,173568),(6,174193),(6,175807),(6, 177057),(6,178751),(6,179999),(6,180001),(6,181249),(6,182943),(6,184193),(6,185 807),(6,186432),(6,187057),(6,188751),(6,189376),(6,189999),(6,190001),(6,191249 ),(6,192943),(6,194193),(6,195807),(6,197057),(6,198751),(6,199999),(6,200001),( 6,201249),(6,202943),(6,204193),(6,205807),(6,207057),(6,208751),(6,209999),(6,2 10001),(6,210624),(6,211249),(6,212943),(6,213568),(6,214193),(6,215807),(6,2170 57),(6,218751),(6,219999),(6,220001),(6,221249),(6,222943),(6,224193),(6,225807) ,(6,226432),(6,227057),(6,228751),(6,229376),(6,229999),(6,230001),(6,231249),(6 ,232943),(6,234193),(6,235807),(6,237057),(6,238751),(6,239999),(6,240001),(6,24 1249),(6,242943),(6,244193),(6,245807),(6,247057),(6,248751),(6,249999),(6,25000 1),(6,250624),(6,251249),(6,252943),(6,253568),(6,254193),(6,255807),(6,257057), (6,258751),(6,259999),(6,260001),(6,261249),(6,262943),(6,264193),(6,265807),(6, 266432),(6,267057),(6,268751),(6,269376),(6,269999),(6,270001),(6,271249),(6,272 943),(6,274193),(6,275807),(6,277057),(6,278751),(6,279999),(6,280001),(6,281249 ),(6,282943),(6,284193),(6,285807),(6,287057),(6,288751),(6,289999),(6,290001),( 6,290624),(6,291249),(6,292943),(6,293568),(6,294193),(6,295807),(6,297057),(6,2 98751),(6,299999),(6,300001),(6,301249),(6,302943),(6,304193),(6,305807),(6,3064 32),(6,307057),(6,308751),(6,309376),(6,309999),(6,310001),(6,311249),(6,312943) ,(6,314193),(6,315807),(6,317057),(6,318751),(6,319999),(6,320001),(6,321249),(6 ,322943),(6,324193),(6,325807),(6,327057),(6,328751),(6,329999),(6,330001),(6,33 0624),(6,331249),(6,332943),(6,333568),(6,334193),(6,335807),(6,337057),(6,33875 1),(6,339999),(6,340001),(6,341249),(6,342943),(6,344193),(6,345807),(6,346432), (6,347057),(6,348751),(6,349376),(6,349999),(6,350001),(6,351249),(6,352943),(6, 354193),(6,355807),(6,357057),(6,358751),(6,359375),(6,359999),(6,360001),(6,361 249),(6,362943),(6,364193),(6,365807),(6,367057),(6,368751),(6,369999),(6,370001 ),(6,370624),(6,371249),(6,372943),(6,373568),(6,374193),(6,375807),(6,377057),( 6,378751),(6,379999),(6,380001),(6,381249),(6,382943),(6,384193),(6,385807),(6,3 86432),(6,387057),(6,388751),(6,389376),(6,389999),(6,390001),(6,390625),(6,3912 49),(6,392943),(6,394193),(6,395807),(6,397057),(6,398751),(6,399999),(6,400001) ,(6,401249),(6,402943),(6,404193),(6,405807),(6,407057),(6,408751),(6,409999),(6 ,410001),(6,410624),(6,411249),(6,412943),(6,413568),(6,414193),(6,415807),(6,41 7057),(6,418751),(6,419999),(6,420001),(6,421249),(6,422943),(6,424193),(6,42580 7),(6,426432),(6,427057),(6,428751),(6,429376),(6,429999),(6,430001),(6,431249), (6,432943),(6,434193),(6,435807),(6,437057),(6,438751),(6,439999),(6,440001),(6, 441249),(6,442943),(6,444193),(6,445807),(6,447057),(6,448751),(6,449999),(6,450 001),(6,450624),(6,451249),(6,452943),(6,453568),(6,454193),(6,455807),(6,457057 ),(6,458751),(6,459999),(6,460001),(6,461249),(6,462943),(6,464193),(6,465807),( 6,466432),(6,467057),(6,468751),(6,469376),(6,469999),(6,470001),(6,471249),(6,4 72943),(6,474193),(6,475807),(6,477057),(6,478751),(6,479999),(6,480001),(6,4812 49),(6,482943),(6,484193),(6,485807),(6,487057),(6,488751),(6,489999),(6,490001) ,(6,490624),(6,491249),(6,492943),(6,493568),(6,494193),(6,495807),(6,497057),(6 ,498751),(6,499999),(6,500001),(6,501249),(6,502943),(6,504193),(6,505807),(6,50 6432),(6,507057),(6,508751),(6,509376),(6,509999),(6,510001),(6,511249),(6,51294 3),(6,514193),(6,515807),(6,517057),(6,518751),(6,519999),(6,520001),(6,521249), (6,522943),(6,524193),(6,525807),(6,527057),(6,528751),(6,529999),(6,530001),(6, 530624),(6,531249),(6,532943),(6,533568),(6,534193),(6,535807),(6,537057),(6,538 751),(6,539999),(6,540001),(6,541249),(6,542943),(6,544193),(6,545807),(6,546432 ),(6,547057),(6,548751),(6,549376),(6,549999),(6,550001),(6,551249),(6,552943),( 6,554193),(6,555807),(6,557057),(6,558751),(6,559999),(6,560001),(6,561249),(6,5 62943),(6,564193),(6,565807),(6,567057),(6,568751),(6,569999),(6,570001),(6,5706 24),(6,571249),(6,572943),(6,573568),(6,574193),(6,575807),(6,577057),(6,578751) ,(6,579999),(6,580001),(6,581249),(6,582943),(6,584193),(6,585807),(6,586432),(6 ,587057),(6,588751),(6,589376),(6,589999),(6,590001),(6,591249),(6,592943),(6,59 4193),(6,595807),(6,597057),(6,598751),(6,599999),(6,600001),(6,601249),(6,60294 3),(6,604193),(6,605807),(6,607057),(6,608751),(6,609375),(6,609999),(6,610001), (6,610624),(6,611249),(6,612943),(6,613568),(6,614193),(6,615807),(6,617057),(6, 618751),(6,619999),(6,620001),(6,621249),(6,622943),(6,624193),(6,625807),(6,626 432),(6,627057),(6,628751),(6,629376),(6,629999),(6,630001),(6,631249),(6,632943 ),(6,634193),(6,635807),(6,637057),(6,638751),(6,639999),(6,640001),(6,640625),( 6,641249),(6,642943),(6,644193),(6,645807),(6,647057),(6,648751),(6,649999),(6,6 50001),(6,650624),(6,651249),(6,652943),(6,653568),(6,654193),(6,655807),(6,6570 57),(6,658751),(6,659999),(6,660001),(6,661249),(6,662943),(6,664193),(6,665807) ,(6,666432),(6,667057),(6,668751),(6,669376),(6,669999),(6,670001),(6,671249),(6 ,672943),(6,674193),(6,675807),(6,677057),(6,678751),(6,679999),(6,680001),(6,68 1249),(6,682943),(6,684193),(6,685807),(6,687057),(6,688751),(6,689999),(6,69000 1),(6,690624),(6,691249),(6,692943),(6,693568),(6,694193),(6,695807),(6,697057), (6,698751),(6,699999),(6,700001),(6,701249),(6,702943),(6,704193),(6,705807),(6, 706432),(6,707057),(6,708751),(6,709376),(6,709999),(6,710001),(6,711249),(6,712 943),(6,714193),(6,715807),(6,717057),(6,718751),(6,719999),(6,720001),(6,721249 ),(6,722943),(6,724193),(6,725807),(6,727057),(6,728751),(6,729999),(6,730001),( 6,730624),(6,731249),(6,732943),(6,733568),(6,734193),(6,735807),(6,737057),(6,7 38751),(6,739999),(6,740001),(6,741249),(6,742943),(6,744193),(6,745807),(6,7464 32),(6,747057),(6,748751),(6,749376),(6,749999),(6,750001),(6,751249),(6,752943) ,(6,754193),(6,755807),(6,757057),(6,758751),(6,759999),(6,760001),(6,761249),(6 ,762943),(6,764193),(6,765807),(6,767057),(6,768751),(6,769999),(6,770001),(6,77 0624),(6,771249),(6,772943),(6,773568),(6,774193),(6,775807),(6,777057),(6,77875 1),(6,779999),(6,780001),(6,781249),(6,782943),(6,784193),(6,785807),(6,786432), (6,787057),(6,788751),(6,789376),(6,789999),(6,790001),(6,791249),(6,792943),(6, 794193),(6,795807),(6,797057),(6,798751),(6,799999),(6,800001),(6,801249),(6,802 943),(6,804193),(6,805807),(6,807057),(6,808751),(6,809999),(6,810001),(6,810624 ),(6,811249),(6,812943),(6,813568),(6,814193),(6,815807),(6,817057),(6,818751),( 6,819999),(6,820001),(6,821249),(6,822943),(6,824193),(6,825807),(6,826432),(6,8 27057),(6,828751),(6,829376),(6,829999),(6,830001),(6,831249),(6,832943),(6,8341 93),(6,835807),(6,837057),(6,838751),(6,839999),(6,840001),(6,841249),(6,842943) ,(6,844193),(6,845807),(6,847057),(6,848751),(6,849999),(6,850001),(6,850624),(6 ,851249),(6,852943),(6,853568),(6,854193),(6,855807),(6,857057),(6,858751),(6,85 9375),(6,859999),(6,860001),(6,861249),(6,862943),(6,864193),(6,865807),(6,86643 2),(6,867057),(6,868751),(6,869376),(6,869999),(6,870001),(6,871249),(6,872943), (6,874193),(6,875807),(6,877057),(6,878751),(6,879999),(6,880001),(6,881249),(6, 882943),(6,884193),(6,885807),(6,887057),(6,888751),(6,889999),(6,890001),(6,890 624),(6,890625),(6,891249),(6,892943),(6,893568),(6,894193),(6,895807),(6,897057 ),(6,898751),(6,899999),(6,900001),(6,901249),(6,902943),(6,904193),(6,905807),( 6,906432),(6,907057),(6,908751),(6,909376),(6,909999),(6,910001),(6,911249),(6,9 12943),(6,914193),(6,915807),(6,917057),(6,918751),(6,919999),(6,920001),(6,9212 49),(6,922943),(6,924193),(6,925807),(6,927057),(6,928751),(6,929999),(6,930001) ,(6,930624),(6,931249),(6,932943),(6,933568),(6,934193),(6,935807),(6,937057),(6 ,938751),(6,939999),(6,940001),(6,941249),(6,942943),(6,944193),(6,945807),(6,94 6432),(6,947057),(6,948751),(6,949376),(6,949999),(6,950001),(6,951249),(6,95294 3),(6,954193),(6,955807),(6,957057),(6,958751),(6,959999),(6,960001),(6,961249), (6,962943),(6,964193),(6,965807),(6,967057),(6,968751),(6,969999),(6,970001),(6, 970624),(6,971249),(6,972943),(6,973568),(6,974193),(6,975807),(6,977057),(6,978 751),(6,979999),(6,980001),(6,981249),(6,982943),(6,984193),(6,985807),(6,986432 ),(6,987057),(6,988751),(6,989376),(6,989999),(6,990001),(6,991249),(6,992943),( 6,994193),(6,995807),(6,997057),(6,998751),(6,999999)]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-6-10 17:23:40 | 显示全部楼层
$x^{k+1}-=x(mod 10^n)$ 等价于$x(x^k-1) -= 0 (mod 10^n)$ 其中$(x,x^k-1)=1$, 我们知道$x-=0(mod 2^n)$和$x-=0(mod 5^n)$都是唯一解 而$x^k-1 -=0(mod 5^n)$的解中,显然x不是5的倍数。由于$\phi(5^n)=4*5^{n-1}$,所以解的数目只同k的因子2和因子5的数目相关,由于同5互素模$5^n$数构成一个有原根的乘法群,所以其模$5^n$解的数目是$gcd(k,4*5^{n-1})$.由此得到$x(x^k-1)-=0(mod 5^n)$解的数目是$1+gcd(k,4*5^{n-1})$ 而对于$n>=3,x^k-1 -=0(mod 2^n)$的解的数目在k是奇数时为1,而在k为偶数时为$2*gcd(k,2^{n-2})$ 所以$x(x^k-1)-=0(mod 2^n)$在k奇数时解的数目为2,但是k为偶数时数目为$1+2*gcd(k,2^{n-2})$ 而最终解的数目为模$5^n$的数目和模$2^n$数目的乘积。 所以k为奇数时数目为$2(1+gcd(k,4*5^{n-1}))$,而k为偶数时是$(1+gcd(k,4*5^{n-1}))(1+2*gcd(k,2^{n-2}))$ 比如22#对应k=100,所以数目为$(1+gcd(100,4*5^5))(1+2*gcd(100,2^4))=101*9=909$

评分

参与人数 1鲜花 +6 收起 理由
wayne + 6

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-6-10 17:39:04 | 显示全部楼层
如果用算法求所有解,一种比较快速的方法就是分别求出模$2^n$和$5^n$的所有解,然后用中国剩余定理构造所有解。而其中关于两个模为0的解不需要计算。而对于余下的解,我们可以通过随机法得到。 比如对于模$5^n$,设$gcd(k,4*5^{n-1})=h$,我们随机选择一个不含因子5的数,计算它关于模$5^n$的次数,如果这个次数不是h的倍数,放弃,另外产生一个数,知道产生达到要求的数(由于原根比例很高,通常很快可以找到满足要求的数)。然后如果这个数的次数大于h,那么可以计算它的若干倍使得新的数次数为h. 有了次数为h的一个数,那么它的任意次方就构成了所有解。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-6-10 17:49:19 | 显示全部楼层
真精彩!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-6-11 13:37:16 | 显示全部楼层
wayne你抢我买卖 似乎n次幂的自守数,和n的素因子分解有关系啊 无心人 发表于 2011-6-10 16:32
,好吧,让我来贴一个给力点的 , 我喜欢2,就贴22次幂的吧:
  1. 1
  2. 25
  3. 76
  4. 376
  5. 625
  6. 9376
  7. 90625
  8. 109376
  9. 890625
  10. 2890625
  11. 7109376
  12. 12890625
  13. 87109376
  14. 212890625
  15. 787109376
  16. 1787109376
  17. 8212890625
  18. 18212890625
  19. 81787109376
  20. 918212890625
  21. 9918212890625
  22. 40081787109376
  23. 59918212890625
  24. 259918212890625
  25. 740081787109376
  26. 3740081787109376
  27. 6259918212890625
  28. 43740081787109376
  29. 56259918212890625
  30. 256259918212890625
  31. 743740081787109376
  32. 2256259918212890625
  33. 7743740081787109376
  34. 92256259918212890625
  35. 392256259918212890625
  36. 607743740081787109376
  37. 2607743740081787109376
  38. 7392256259918212890625
  39. 22607743740081787109376
  40. 77392256259918212890625
  41. 977392256259918212890625
  42. 9977392256259918212890625
  43. 19977392256259918212890625
  44. 80022607743740081787109376
  45. 380022607743740081787109376
  46. 619977392256259918212890625
  47. 3380022607743740081787109376
  48. 6619977392256259918212890625
  49. 93380022607743740081787109376
  50. 106619977392256259918212890625
  51. 893380022607743740081787109376
  52. 4106619977392256259918212890625
  53. 5893380022607743740081787109376
  54. 95893380022607743740081787109376
  55. 995893380022607743740081787109376
  56. 9004106619977392256259918212890625
  57. 90995893380022607743740081787109376
  58. 109004106619977392256259918212890625
  59. 890995893380022607743740081787109376
  60. 3890995893380022607743740081787109376
  61. 6109004106619977392256259918212890625
  62. 96109004106619977392256259918212890625
  63. 103890995893380022607743740081787109376
  64. 896109004106619977392256259918212890625
  65. 9103890995893380022607743740081787109376
  66. 30896109004106619977392256259918212890625
  67. 69103890995893380022607743740081787109376
  68. 230896109004106619977392256259918212890625
  69. 769103890995893380022607743740081787109376
  70. 3230896109004106619977392256259918212890625
  71. 6769103890995893380022607743740081787109376
  72. 23230896109004106619977392256259918212890625
  73. 76769103890995893380022607743740081787109376
  74. 423230896109004106619977392256259918212890625
  75. 576769103890995893380022607743740081787109376
  76. 3423230896109004106619977392256259918212890625
  77. 6576769103890995893380022607743740081787109376
  78. 23423230896109004106619977392256259918212890625
  79. 76576769103890995893380022607743740081787109376
  80. 423423230896109004106619977392256259918212890625
  81. 576576769103890995893380022607743740081787109376
  82. 2576576769103890995893380022607743740081787109376
  83. 7423423230896109004106619977392256259918212890625
  84. 42576576769103890995893380022607743740081787109376
  85. 57423423230896109004106619977392256259918212890625
  86. 442576576769103890995893380022607743740081787109376
  87. 557423423230896109004106619977392256259918212890625
  88. 9442576576769103890995893380022607743740081787109376
  89. 99442576576769103890995893380022607743740081787109376
  90. 999442576576769103890995893380022607743740081787109376
  91. 1000557423423230896109004106619977392256259918212890625
  92. 8999442576576769103890995893380022607743740081787109376
  93. 11000557423423230896109004106619977392256259918212890625
  94. 88999442576576769103890995893380022607743740081787109376
  95. 188999442576576769103890995893380022607743740081787109376
  96. 811000557423423230896109004106619977392256259918212890625
  97. 3811000557423423230896109004106619977392256259918212890625
  98. 6188999442576576769103890995893380022607743740081787109376
  99. 36188999442576576769103890995893380022607743740081787109376
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-6-11 13:42:09 | 显示全部楼层
Mathematica代码:
  1. hello[digit_, exp_] :=
  2. Module[{d = digit, n = exp, tmp},
  3. tmp[1] = Block[{k, x, a, nn = n},
  4. a /. Solve[a^nn - a == 10 k && 0 < a < 10, {a, k}, Integers]];
  5. Union[Flatten[
  6. Table[tmp[ii] =
  7. Sort[Cases[
  8. Flatten@Table[
  9. t + 10^(ii - 1) x /.
  10. Block[{k, x, a = t},
  11. Solve[(a^n - a)/10^(ii - 1) + x (a^(n - 1) n - 1) ==
  12. 10 k && 0 <= x < 10, {x, k}, Integers]], {t,
  13. tmp[ii - 1]}], _Integer]], {ii, 2, d}]]]]
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-6-11 16:36:51 | 显示全部楼层
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-6-12 23:06:30 | 显示全部楼层
28# G-Spider 不能访问
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-6-12 23:08:17 | 显示全部楼层
1001次幂 100位数有7665个:
  1. 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001
  2. 1001540347141539266402700165969029103420513334223861976455682337333169637027817196359523418092077057
  3. 1003985361783660394122980219875666980838272377998885153153538207781991786760045215487480163574218751
  4. 1004474291074800339474319614155303915741214287777252870390779454884838576212137588152996418333704193
  5. 1005525708925199660525680385844696084258785712222747129609220545115161423787862411847003581666295807
  6. 1006014638216339605877019780124333019161727622001114846846461792218008213239954784512519836425781249
  7. 1006992680891830197061490109937833490419136188999442576576769103890995893380022607743740081787109376
  8. 1008459652858460733597299834030970896579486665776138023544317662666830362972182803640476581907922943
  9. 1009999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
  10. 1010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001
  11. 1011540347141539266402700165969029103420513334223861976455682337333169637027817196359523418092077057
  12. 1013985361783660394122980219875666980838272377998885153153538207781991786760045215487480163574218751
  13. 1014474291074800339474319614155303915741214287777252870390779454884838576212137588152996418333704193
  14. 1015525708925199660525680385844696084258785712222747129609220545115161423787862411847003581666295807
  15. 1016014638216339605877019780124333019161727622001114846846461792218008213239954784512519836425781249
  16. 1018459652858460733597299834030970896579486665776138023544317662666830362972182803640476581907922943
  17. 1019999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
  18. .....
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 16:05 , Processed in 0.046959 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表