找回密码
 欢迎注册
楼主: mathe

[原创] 无理角度

[复制链接]
发表于 2008-5-6 18:19:45 | 显示全部楼层
那你就把0-90的整度数剔除15的倍数全部求出余弦 然后从1到360求方幂 看有可以化简的么
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-6 18:20:43 | 显示全部楼层
非3倍数的余弦 其复杂程度是你无法想象的 俺求过1度的正弦 太复杂
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-6 20:48:55 | 显示全部楼层
至少 3度倍数的三角函数,可以写出表达式,至于其他的就不知道了。 因为15度的正余弦可用根式表示,18度的正余弦也可用根式表示,利用三角函数的和差公式,可求出3度的三角函数,进一步利用倍角公式,所有3度的倍数度都可用根式表示。下面贴出6度倍数的正余弦公式。
sinvalue.gif
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-6 21:11:32 | 显示全部楼层
一度的三角函数值可能就无法避免复数的引入了吧
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-5-10 18:11:13 | 显示全部楼层
http://tieba.baidu.com/f?kz=368976205 中,有人利用分圆多项式的知识可以证明,只有角度是整数角度的时候,余弦值才有可能是$sqrt(p)-q$或$p-sqrt(q)$形式,其中p,q为有理数. 其中关于分圆多项式的结论是,如果 $z$是$x^n=1$的幅角最小单位复根,也就是$z=e^{{2pii}/n}$ 那么函数 $prod_{(t,n)=1,0
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-10 18:23:56 | 显示全部楼层
这个整系数多项式是什么形式的?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-5-10 18:29:08 | 显示全部楼层
写出来估计也看不出什么特殊的,你可以查看: http://mathworld.wolfram.com/CyclotomicPolynomial.html
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-5-10 18:30:19 | 显示全部楼层
你贴出的角度已经足够了。 更加精确一些,我们只要需要检验满足$phi(n)<=4$的所有n所划分的角度,也就是$cos({2kpi}/10)$和$cos({2kpi}/12)$和$cos({2kpi}/8)$ 也就是72度,30度和45度倍数的余弦值就可以了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-10 18:41:07 | 显示全部楼层
是liangbch贴出来的 分圆多项式看起来很好玩的意思 似乎都是某些x^n-1的因子 是否其各项的系数的绝对值有可能大于1??
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-5-10 18:47:32 | 显示全部楼层
有可能,不过wolfram链接中说$Phi_{pq}$的所有系数只能是$0,+-1$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-1 23:58 , Processed in 0.024242 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表