数学研发论坛

 找回密码
 欢迎注册
12
返回列表 发新帖
楼主: tian27546

[分享] 三道趣题

[复制链接]
发表于 2012-5-3 16:33:51 | 显示全部楼层
4# creasson
能帮我下载这篇文章吗
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-5-3 16:36:05 | 显示全部楼层
我构造了一个数列。
a[1]=0; (a[n+1] - a[n] )/(1+a[n+1]a[n]) =1/(n^2+1)
不过,这个数列也麻烦。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-5-3 20:38:35 | 显示全部楼层
西西的第一题结果不太对。
在creasson的帮助下,算出来结果是:
$ArcTan(\frac{\tan (\frac{\sqrt{2-\sqrt{2}} \pi }{2^{3//4}})-(\sqrt{2}-1) \tanh (\frac{\sqrt{2+\sqrt{2}} \pi }{2^{3//4}})}{\tanh (\frac{\sqrt{2+\sqrt{2}} \pi }{2^{3//4}})+(\sqrt{2}-1) \tan (\frac{\sqrt{2-\sqrt{2}} \pi }{2^{3//4}})})$
1.jpg
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-5-3 21:24:36 | 显示全部楼层
一般的:
2.jpg
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-5-6 21:35:24 | 显示全部楼层
05.gif
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-12-2 13:32:16 | 显示全部楼层
本帖最后由 葡萄糖 于 2018-12-2 18:02 编辑
wayne 发表于 2012-5-3 20:38
西西的第一题结果不太对。
在creasson的帮助下,算出来结果是:
$ArcTan(\frac{\tan (\frac{\sqrt{2-\sqrt{2}} \pi }{2^{3//4}})-(\sqrt{2}-1) \tanh (\frac{\sqrt{2+\sqrt{2}} \pi }{2^{3//4}})}{\tanh (\frac{\sqrt{2+\sqrt{2}} \pi }{2^{3//4}})+(\sqrt{2}-1) \tan (\frac{\sqrt{2-\sqrt{2}} \pi }{2^{3//4}})})$
...


\begin{align*}
&\arctan\left(\frac{\tan\left(\frac{\sqrt{2-\sqrt{2}}}{\sqrt[3]{8}}\pi\right)-\left(\sqrt{2}-1\right)\tanh\left(\frac{\sqrt{2+\sqrt{2}}}{\sqrt[3]{8}}\pi\right)}
{\tanh\left(\frac{\sqrt{2+\sqrt{2}}}{\sqrt[3]{8}}\pi\right)+\left(\sqrt{2}-1\right)\tan\left(\frac{\sqrt{2-\sqrt{2}}}{\sqrt[3]{8}}\pi\right)}\right)\\
&\arctan\left(\frac{\frac{\tan\left(\frac{\sqrt{2-\sqrt{2}}}{\sqrt[3]{8}}\pi\right)}{\tanh\left(\frac{\sqrt{2+\sqrt{2}}}
{\sqrt[3]{8}}\pi\right)}-\left(\sqrt{2}-1\right)}
{1+\left(\sqrt{2}-1\right)\frac{\tan\left(\frac{\sqrt{2-\sqrt{2}}}{\sqrt[3]{8}}\pi\right)}{\tanh\left(\frac{\sqrt{2+\sqrt{2}}}
{\sqrt[3]{8}}\pi\right)}}\right)\\
&\arctan\left(\frac{\frac{\tan\left(\frac{\sqrt{2-\sqrt{2}}}{\sqrt[3]{8}}\pi\right)}{\tanh\left(\frac{\sqrt{2+\sqrt{2}}}
{\sqrt[3]{8}}\pi\right)}-\tan\left(\frac{\pi}{8}\right)}
{1+\tan\left(\frac{\pi}{8}\right)\frac{\tan\left(\frac{\sqrt{2-\sqrt{2}}}{\sqrt[3]{8}}\pi\right)}{\tanh\left(\frac{\sqrt{2+\sqrt{2}}}
{\sqrt[3]{8}}\pi\right)}}\right)\\
&\arctan\left(\frac{\tan\left(\frac{\sqrt{2-\sqrt{2}}}{\sqrt[3]{8}}\pi\right)}{\tanh\left(\frac{\sqrt{2+\sqrt{2}}}
{\sqrt[3]{8}}\pi\right)}\right)-\frac{\pi}{8}\\
&\arctan\left(\frac{\tan\left(\sqrt{\frac{\sqrt{2}-1}{2}}\pi\right)}{\tanh\left(\sqrt{\frac{\sqrt{2}+1}{2}}\pi\right)}\right)-\frac{\pi}{8}\\
\end{align*}

\[\sum\limits_{n=1}^{\infty}\arctan\frac{1}{n^2+1}=\arctan\left(\frac{\tan\left(\sqrt{\frac{\sqrt{2}-1}{2}}\pi\right)}{\tanh\left(\sqrt{\frac{\sqrt{2}+1}{2}}\pi\right)}\right)-\frac{\pi}{8}
\]
下面这个反正切函数无穷级数和刊载于AMM E3375
\[\sum\limits_{n=1}^{\infty}\arctan\frac{1}{n^2}=\arctan\left(\frac{\tan\left(\frac{\pi}{\sqrt2}\right)}{\tanh\left(\frac{\pi}{\sqrt2}\right)}\right)+\frac{3\pi}{4}
\]
【注】:
\[\arctan\left(\frac{x-\tan\left(\frac{\pi}{4}\right)}{1+\tan\left(\frac{\pi}{4}\right)x}\right)=\arctan\left(\frac{x-1}{1+x}\right)=\arctan\left(x\right)-\frac{\pi}{4}-\frac{\pi}{2}\operatorname{sign}\left(x+1\right)+\frac{\pi}{2}
\]
\[\arctan\left(\frac{\frac{\tan\left(\frac{\pi}{\sqrt{2}}\right)}{\tanh\left(\frac{\pi}{\sqrt{2}}\right)}-\tan\left(\frac{\pi}{4}\right)}{1+\tan\left(\frac{\pi}{4}\right)\frac{\tan\left(\frac{\pi}{\sqrt{2}}\right)}{\tanh\left(\frac{\pi}{\sqrt{2}}\right)}}\right)
=\arctan\left(\frac{\tan\left(\frac{\pi}{\sqrt{2}}\right)-\tanh\left(\frac{\pi}{\sqrt{2}}\right)}{\tan\left(\frac{\pi}{\sqrt{2}}\right)+\tanh\left(\frac{\pi}{\sqrt{2}}\right)}\right)
=\arctan\left(\frac{\tan\left(\frac{\pi}{\sqrt{2}}\right)}{\tanh\left(\frac{\pi}{\sqrt{2}}\right)}\right)+\frac{3\pi}{4}
\]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2019-6-17 19:12 , Processed in 0.058635 second(s), 17 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表