- 注册时间
- 2014-1-19
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 4907
- 在线时间
- 小时
|
发表于 2019-6-24 13:21:58
|
显示全部楼层
本帖最后由 葡萄糖 于 2019-6-24 13:23 编辑
空间直角坐标系中,已知点\(\,M(x_{\overset{\,}M},y_{\overset{\,}M},z_{\overset{\,}M})\,\),则其关于平面\(\,Ax+By+Cz+D=0\,\)的对称点\(\,N(x_{\overset{\,}N},y_{\overset{\,}N},z_{\overset{\,}N})\,\)的坐标为:
\begin{align*}
x_{\overset{\,}N}&=x_{\overset{\,}M}-\dfrac{2A(Ax_{\overset{\,}M}+By_{\overset{\,}M}+Cz_{\overset{\,}M}+D)}{A^2+B^2+C^2}\\
y_{\overset{\,}N}&=y_{\overset{\,}M}-\dfrac{2B(Ax_{\overset{\,}M}+By_{\overset{\,}M}+Cz_{\overset{\,}M}+D)}{A^2+B^2+C^2}\\
z_{\overset{\,}N}&=z_{\overset{\,}M}-\dfrac{2C(Ax_{\overset{\,}M}+By_{\overset{\,}M}+Cz_{\overset{\,}M}+D)}{A^2+B^2+C^2}
\end{align*}
参考《空间解析几何解题指导》萧永震P135 T3.25 |
|