- 注册时间
- 2017-1-14
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 10941
- 在线时间
- 小时
|
楼主 |
发表于 2025-12-24 11:36:49
|
显示全部楼层
a, b, c 是大于1的正整数。\(1=a^2+b^2-c^k\) k 能跑遍所有自然数吗?谢谢!
\(c^k=a^2+b^2-1\) ——k 能跑遍所有自然数!——这里取a是最小的。
\(w(1)=7,7^1=2^2+2^2-1\)
\(w(2)=7,7^2=5^2+5^2-1\)
\(w(3)=4,4^3=4^2+7^2-1\)
\(w(4)=8,8^4=31^2+56^2-1\)
\(w(5)=3,3^5=10^2+12^2-1\)
\(w(6)=2,2^6=4^2+7^2-1\)
\(w(7)=4,4^7=16^2+127^2-1\)
\(w(8)=3,3^8=39^2+71^2-1\)
\(w(9)=4,4^9=324^2+511^2-1\)
\(w(10)=2,2^{10}=8^2+31^2-1\)
\(w(11)=4,4^{11}=64^2+2407^2-1\)
\(w(12)=2,2^{12}=31^2+56^2-1\)
\(w(13)=3,3^{13}=82^2+1260^2-1\)
\(w(14)=2,2^{14}=16^2+127^2-1\)
\(w(15)=4,4^{15}=256^2+32767^2-1\)
\(w(16)=4,4^{16}=20449^2+62264^2-1\)
从w(17)开始就有规律了—— c = 4, 2, 4, 2, 4, 2, 4, 2, ... ——通项公式还是没有。
{{a -> 512, b -> 131071}, {a -> 32, b -> 511}, {a -> 1024, b -> 524287}, {a -> 481, b -> 904}, {a -> 2048, b -> 2097151},
{a -> 64, b -> 2047}, {a -> 4096, b -> 8388607}, {a -> 511, b -> 4064}, {a -> 8192, b -> 33554431}, {a -> 128, b -> 8191},
{a -> 16384, b -> 134217727}, {a -> 7711, b -> 14456}, {a -> 32768, b -> 536870911}, {a -> 256, b -> 32767}, {a -> 65536, b -> 2147483647},
{a -> 20449, b -> 62264}, {a -> 131072, b -> 8589934591}, {a -> 512, b -> 131071}, {a -> 262144, b -> 34359738367}, {a -> 8191, b -> 262016}}
Table[First@Solve[{(3 - Cos[n*Pi])^n == a^2 + b^2 - 1, 1 < a ≤ b}, {a, b}, Integers], {n, 17, 36}]
a是这样一串数——{512, 32, 1024, 481, 2048, 64, 4096, 511, 8192, 128, 16384, 7711, 32768, 256, 65536, 20449, 131072, 512, 262144, 8191, 524288, 1024, 1048576, 130561, 2097152, 2048, 4194304, 1593569, 8388608,
4096, 16777216, 131071, 33554432, 8192, 67108864, 9395231, 134217728, 16384, 268435456, 33423871, 536870912, 32768, 1073741824, 2097151, 2147483648, 65536, 4294967296, 1438793759, 8589934592, 131072, |
|