接楼上。{2,y,2}应该有一个漂亮的通解公式。
题目: a,b,c=正整数。\(a^2+b^y-c^2=n\) ——n能跑遍所有正整数。
y可以是1,2,3,4,5,6,7,......。b恰好=1或2。譬如y=9。
- x=2; y=9; z=2;Table[Do[Block[{d=n + c^x}, For[b=Floor[d^(1/y)], b > 0, b--, Block[{a=(d - b^y)^(1/z)}, If[IntegerQ[a] && a > 0, Return[{n, c, b, a}]]]]], {c, Infinity}], {n, 6, 100}]
复制代码
{{6, 2, 1, 3}, {7, 53, 2, 48}, {8, 3, 1, 4}, {9, 1, 1, 3}, {10, 4, 1, 5},
{11, 85, 2, 82}, {12, 5, 1, 6}, {13, 2, 1, 4}, {14, 6, 1, 7}, {15, 39, 2, 32},
{16, 1, 1, 4}, {17, 3, 1, 5}, {18, 8, 1, 9}, {19, 23, 2, 6}, {20, 9, 1, 10},
{21, 4, 1, 6}, {22, 2, 1, 5}, {23, 83, 2, 80}, {24, 11, 1, 12}, {25, 1, 1, 5},
{26, 12, 1, 13}, {27, 51, 2, 46}, {28, 3, 1, 6}, {29, 6, 1, 8}, {30, 14, 1, 15},
{31, 25, 2, 12}, {32, 15, 1, 16}, {33, 2, 1, 6}, {34, 4, 1, 7}, {35, 31, 2, 22},
{36, 1, 1, 6}, {37, 8, 1, 10}, {38, 18, 1, 19}, {39, 27, 2, 16}, {40, 5, 1, 8},
{41, 3, 1, 7}, {42, 20, 1, 21}, {43, 37, 2, 30}, {44, 21, 1, 22}, {45, 10, 1, 12},
{46, 2, 1, 7}, {47, 23, 2, 8}, {48, 23, 1, 24}, {49, 1, 1, 7}, {50, 24, 1, 25},
{51, 231, 2, 230}, {52, 7, 1, 10}, {53, 12, 1, 14}, {54, 26, 1,27}, {55, 229, 2, 228},
{56, 3, 1, 8}, {57, 5, 1, 9}, {58, 8, 1, 11}, {59, 77, 2, 74}, {60, 29, 1, 30},
{61, 2, 1, 8}, {62, 30, 1, 31}, {63, 154, 3, 64}, {64, 1, 1, 8}, {65, 6, 1, 10},
{66, 4, 1, 9}, {67, 47, 2, 42}, {68, 33, 1, 34}, {69, 16, 1, 18}, {70, 10, 1, 13},
{71, 29, 2, 20}, {72, 21, 2, 1}, {73, 3, 1, 9}, {74, 36, 1, 37}, {75, 21, 2, 2},
{76, 5, 1, 10}, {77, 18, 1, 20}, {78, 2, 1, 9}, {79, 198, 3, 140}, {80, 21, 2, 3},
{81, 1, 1, 9}, {82, 12, 1, 15}, {83, 23, 2, 10}, {84, 41, 1, 42}, {85, 4, 1, 10},
{86, 6, 1, 11}, {87, 21, 2, 4}, {88, 13, 1, 16}, {89, 9, 1, 13}, {90, 44, 1, 45},
{91, 141, 3, 17}, {92, 3, 1, 10}, {93, 22, 1, 24}, {94, 14, 1, 17}, {95, 71, 2, 68},
{96, 7, 1, 12}, {97, 2, 1, 10}, {98, 48, 1, 49}, {99, 33, 2, 26}, {100, 1, 1, 10}}
把b=1或2固定了。
- Table[FindInstance[{n == a^2 + Floor[(Cos[(n + 1) Pi/2] + 3)/2]^9 - c^2, 0 < a, 0 < c}, {a, c}, Integers, 1], {n, 6, 100}]
复制代码
{{{a -> 3, c -> 2}}, {{a -> 252, c -> 253}}, {{a -> 4, c -> 3}}, {{a -> 3, c -> 1}}, {{a -> 5, c -> 4}},
{{a -> 250, c -> 251}}, {{a -> 6, c -> 5}}, {{a -> 4, c -> 2}}, {{a -> 7, c -> 6}}, {{a -> 248, c -> 249}},
{{a -> 8, c -> 7}}, {{a -> 5, c -> 3}}, {{a -> 9, c -> 8}}, {{a -> 246, c -> 247}}, {{a -> 10, c -> 9}},
{{a -> 6, c -> 4}}, {{a -> 11, c -> 10}}, {{a -> 244, c -> 245}}, {{a -> 12, c -> 11}}, {{a -> 7, c -> 5}},
{{a -> 13, c -> 12}}, {{a -> 242, c -> 243}}, {{a -> 14, c -> 13}}, {{a -> 8, c -> 6}}, {{a -> 15, c -> 14}},
{{a -> 240, c -> 241}}, {{a -> 16, c -> 15}}, {{a -> 9, c -> 7}}, {{a -> 17, c -> 16}}, {{a -> 238, c -> 239}},
{{a -> 18, c -> 17}}, {{a -> 10, c -> 8}}, {{a -> 19, c -> 18}}, {{a -> 236, c -> 237}}, {{a -> 20, c -> 19}},
{{a -> 11, c -> 9}}, {{a -> 21, c -> 20}}, {{a -> 234, c -> 235}}, {{a -> 22, c -> 21}}, {{a -> 12, c -> 10}},
{{a -> 23, c -> 22}}, {{a -> 232, c -> 233}}, {{a -> 24, c -> 23}}, {{a -> 13, c -> 11}}, {{a -> 25, c -> 24}},
{{a -> 230, c -> 231}}, {{a -> 26, c -> 25}}, {{a -> 14, c -> 12}}, {{a -> 27, c -> 26}}, {{a -> 228, c -> 229}},
{{a -> 28, c -> 27}}, {{a -> 15, c -> 13}}, {{a -> 29, c -> 28}}, {{a -> 226, c -> 227}}, {{a -> 30, c -> 29}},
{{a -> 16, c -> 14}}, {{a -> 31, c -> 30}}, {{a -> 224, c -> 225}}, {{a -> 32, c -> 31}}, {{a -> 17, c -> 15}},
{{a -> 33, c -> 32}}, {{a -> 222, c -> 223}}, {{a -> 34, c -> 33}}, {{a -> 18, c -> 16}}, {{a -> 35, c -> 34}},
{{a -> 220, c -> 221}}, {{a -> 36, c -> 35}}, {{a -> 19, c -> 17}}, {{a -> 37, c -> 36}}, {{a -> 218, c -> 219}},
{{a -> 38, c -> 37}}, {{a -> 20, c -> 18}}, {{a -> 39, c -> 38}}, {{a -> 216, c -> 217}}, {{a -> 40, c -> 39}},
{{a -> 21, c -> 19}}, {{a -> 41, c -> 40}}, {{a -> 214, c -> 215}}, {{a -> 42, c -> 41}}, {{a -> 22,c -> 20}},
{{a -> 43, c -> 42}}, {{a -> 212, c -> 213}}, {{a -> 44, c -> 43}}, {{a -> 23, c -> 21}}, {{a -> 45, c -> 44}},
{{a -> 210, c -> 211}}, {{a -> 46, c -> 45}}, {{a -> 24, c -> 22}}, {{a -> 47, c -> 46}}, {{a -> 208, c -> 209}},
{{a -> 48, c -> 47}}, {{a -> 25, c -> 23}}, {{a -> 49, c -> 48}}, {{a -> 206, c -> 207}}, {{a -> 50, c -> 49}}}
为了看得仔细一点。特别地把y单独提出——还是很有规律的——虽然前面几行左面几列规律不明显。——当n,y够大时规律就出来了。
- Table[Flatten@Table[b /. FindInstance[{n == a^2 + b^y - c^2, 0 < a, 1 <= b <= 2, 0 < c}, {b, c, a}, Integers, 1], {n, 60}], {y, 33}]
复制代码
{1, 2, b, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1},
{1, b, b, 2, b, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2},
{1, b, 2, 1, 2, 1, b, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2},
{1, b, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, b, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2},
{1, b, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, b, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1},
{1, b, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1}}
看下面的, 规律就出来了。
求助: 来个“通项公式”。谢谢!!! |