- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19896
- 在线时间
- 小时
|
发表于 2014-3-19 19:58:57
|
显示全部楼层
1. 若内心\(I\)到三顶点的距离为\(x,y,z\),则\(x\sin(\frac{A}{2})=r,y\sin(\frac{B}{2})=r,z\sin(\frac{C}{2})=r\)
楼上所得到的半径方程:\(\frac{1}{r^3}=(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2})\frac{1}{r}+\frac{2}{xyz}\)
本质就是\(\sin(\frac{A}{2})^2+\sin(\frac{B}{2})^2+\sin(\frac{C}{2})^2+2\sin(\frac{B}{2})\sin(\frac{C}{2})\sin(\frac{A}{2})-1\)
\(=\sin(\frac{A}{2})^2+\sin(\frac{B}{2})^2+(\cos(\frac{A}{2})\cos(\frac{B}{2})-\sin(\frac{A}{2})\sin(\frac{B}{2})^2+2\sin(\frac{B}{2})\sin(\frac{C}{2})(\cos(\frac{A}{2})\cos(\frac{B}{2})-\sin(\frac{A}{2})\sin(\frac{B}{2})\)
\(=\sin(\frac{A}{2})^2+\sin(\frac{B}{2})^2+(1-\sin(\frac{A}{2})^2)(1-\sin(\frac{B}{2})^2)-\sin(\frac{A}{2})^2\sin(\frac{B}{2})^2-1=0\)
2.若旁心\(I_1\)到三顶点的距离为\(x,y,z\),则\(x\sin(\frac{A}{2})=r,y\cos(\frac{B}{2})=r,z\cos(\frac{C}{2})=r\)
楼上所得到的半径方程:\(\frac{1}{r^3}=(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2})\frac{1}{r}-\frac{2}{xyz}\)
本质就是\(\sin(\frac{A}{2})^2+\cos(\frac{B}{2})^2+\cos(\frac{C}{2})^2+2\sin(\frac{B}{2})\cos(\frac{C}{2})\cos(\frac{A}{2})-1\)
\(=\sin(\frac{A}{2})^2+\cos(\frac{B}{2})^2+(\sin(\frac{A}{2})\cos(\frac{B}{2})+\cos(\frac{A}{2})\sin(\frac{B}{2})^2+2\sin(\frac{B}{2})\cos(\frac{C}{2})(\sin(\frac{A}{2})\cos(\frac{B}{2})+\cos(\frac{A}{2})\sin(\frac{B}{2})\)
\(=\sin(\frac{A}{2})^2+\cos(\frac{B}{2})^2+(1-\sin(\frac{A}{2})^2)(1-\cos(\frac{B}{2})^2)-2\sin(\frac{A}{2})^2\cos(\frac{B}{2})^2-1=0\)
3.对于锐角三角形\(\triangle ABC\)若外心\(O\)到三边的距离为\(x,y,z\),则\(x=R\cos(A),y=R\cos(B),y=R\cos(B)\)
楼上所得到的半径方程:\(R^3=(x^2+y^2+z^2)R-2xyz\)
本质就是\(\cos(A)^2+\cos(B)^2+\cos(C)^2-2\cos(A)\cos(B)\cos(C)-1\)
\(=\cos(A)^2+\cos(B)^2+(\cos(A)\cos(B)-\sin(A)\sin(B))^2-2\cos(A)\cos(B)((\cos(A)\cos(B)-\sin(A)\sin(B))-1\)
\(=\cos(A)^2+\cos(B)^2+\cos(A)^2\cos(B)^2+(1-cos(A)^2)(1-cos(B)^2)-2cos(A)^2cos(B)^2-1=0\)
4.对于钝角三角形\(\triangle ABC\)(设\( \angle A>90^\circ \)),若外心\(O\)到三边的距离为\(x,y,z\),则\(-x=R\cos(A),y=R\cos(B),y=R\cos(B)\)
楼上所得到的半径方程:\(R^3=(x^2+y^2+z^2)R+2xyz\)
本质就是\(\cos(A)^2+\cos(B)^2+\cos(C)^2-2\cos(A)\cos(B)\cos(C)-1\)
\(=\cos(A)^2+\cos(B)^2+(\cos(A)\cos(B)-\sin(A)\sin(B))^2-2\cos(A)\cos(B)((\cos(A)\cos(B)-\sin(A)\sin(B))-1\)
\(=\cos(A)^2+\cos(B)^2+\cos(A)^2\cos(B)^2+(1-cos(A)^2)(1-cos(B)^2)-2cos(A)^2cos(B)^2-1=0\)
|
|