- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19896
- 在线时间
- 小时
|
楼主 |
发表于 2014-2-15 02:00:41
|
显示全部楼层
当\(N=5\)时,利用3#的结果可以得到(将方程两边取正切并展开可以得到)
\((u+v+x+y+z)r^4+(-uvx-uvy-uvz-uxy-uxz-uyz-vxy-vxz-vyz-xyz)r^2+xyzuv=0\) (求解方程即2#结果)
注:\(x=x_1,y=x_2,z=x_3,u=x_4,v=x_5\)
\((-b+a+c+d-e)(-b+a-c+d-e)(-b+a+c-d-e)(b+a-c+d-e)(-b+a+c-d+e)+(8a^3-8a^2b+8a^2c+8a^2d-8a^2e-8ab^2-16abd+8ac^2-16acd-16ace+8ad^2-8ae^2+8b^3-8b^2c+8b^2d+8b^2e-8bc^2-16bce+8bd^2-16bde+8be^2+8c^3-8c^2d+8c^2e-8cd^2+8ce^2+8d^3-8d^2e-8de^2+8e^3)r^2+(16a+16e+16c+16b+16d)r^4=0\)
注:\(a=a_1,b=a_2,c=a_3,d=a_4,e=a_5\)
当\(N=6\)时,利用3#的结果可以得到(将方程两边取正切并展开可以得到)
\((-z-w-y-x-v-u)r^4+(uvw+uvx+uvy+uvz+uwx+uwy+uwz+uxy+uxz+uyz+vwx+vwy+vwz+vxy+vxz+vyz+wxy+wxz+wyz+xyz)r^2 -uvzwx-uvzwy-vwxyz-xyzuv-uvwxy-uwxyz=0\)
(求解方程即2#结果)
注:\(x=x_1,y=x_2,z=x_3,u=x_4,v=x_5,w=x_6, x_1+x_2=a_1,x_2+x_2=a_2,...,x_6+x_1=g\)
\(2a^2bd^2-2a^3ce-3a^2b^2e+2a^2c^2d+3ab^3c-2ab^3d+ab^3e-ab^2d^2+abc^3+4a^3cd-a^2c^2e-6a^3bd+a^3de-9a^2b^2c+6a^2bc^2+6a^2b^2d-a^2cd^2-a^5-abcde-2x^3cb-2x^3cd+2x^3ce+2c^2dx^2-6x^2a^2e-2x^3be+2xc^3a+12xb^2a^2-4xb^3a+8xc^2a^2+2c^2bx^2-7c^2ax^2-6b^2ax^2+6a^2dx^2+12a^2bx^2-12a^2cx^2-12xa^3b+10xa^3c-6xa^3d+4xa^3e+2xa^2d^2-2x^3da-4x^3ab+6x^3ac+4x^3ae-8a^2bcd-2a^2bde+a^2cde+4ab^2cd-2ab^2ce+ab^2de-2abc^2d+abc^2e+abcd^2+4a^2bce-2xcdea+10xdcab-6xecab+2xadeb+4a^4b-3a^4c+2a^4d-a^4e-6a^3b^2-a^3d^2+4a^2b^3-a^2c^3-ab^4-3ab^2c^2+9a^3bc+3a^3be-3a^3c^2-x^4a-x^4c-x^4e+(-e-c-a)r^4-c^3x^2+2x^3c^2+4xa^4-6a^3x^2+4x^3a^2+(-2a^3+4a^2b-4a^2c+2a^2d-2a^2e+4a^2x-2ab^2+5abc-2abd+3abe-4abx-3ac^2+4acd-2ace+6acx-ad^2+ade-2adx+4aex-2ax^2-b^2c-b^2e+2bc^2-2bcd+2bce-2bcx-2bex-c^3+2c^2d-c^2e+2c^2x-cd^2+cde-2cdx+2cex-2cx^2-2ex^2)r^2+cdx^2e+x^2dae-6xdb^2a+7x^2bae-2xd^2ab-10xa^2dc-6x^2dab+6xa^2ce-8xc^2ab+13cabx^2-2cdbx^2-8xa^2be-2xa^2de-6x^2cae+2cbx^2e+12xa^2db-4xdc^2a+2xd^2ca+8dcax^2+2xec^2a+10xb^2ac+4xb^2ae-20xa^2bc-b^2x^2e-c^2x^2e-b^2cx^2-x^2d^2a-cd^2x^2=0\)
注:\(a=a_1,b=a_2,c=a_3,d=a_4,e=a_5,a+c+e=b+d+g\)
当\(N=7\)时,利用3#的结果可以得到(将方程两边取正切并展开可以得到)
\((-w-y-s-v-u-x-z)r^6+(suv+suw+sux+suy+suz+svw+svx+svy+svz+swx+swy+swz+sxy+sxz+syz+uvw+uvx+uvy+uvz+uwx+uwy+uwz+uxy+uxz+uyz+vwx+vwy+vwz+vxy+vxz+vyz+wxy+wxz+wyz+xyz)r^4+(-suvwx-suvwy-suvwz-suvxy-suvxz-suvyz-suwxy-suwxz-suwyz-suxyz-svwxy-svwxz-svwyz-svxyz-swxyz-uvwxy-uvwxz-uvwyz-uvxyz-uwxyz-vwxyz)r^2+suvwxyz=0\)
注:\(x=x_1,y=x_2,z=x_3,u=x_4,v=x_5,w=x_6,s=x_7, x_1+x_2=a_1,x_2+x_2=a_2,...,x_7+x_1=h\)
-(-b+a+c-d+e-g-h)*(b+a-c+d-e+g-h)*(-b+a+c-d+e-g+h)*(-b+a+c-d+e+g-h)*(-b+a+c-d-e+g-h)*(-b+a+c+d-e+g-h)*(-b+a-c+d-e+g-h)+(-12*a^5+36*a^4*b-28*a^4*c+4*a^4*d+4*a^4*e-28*a^4*g+36*a^4*h-24*a^3*b^2+48*a^3*b*c+16*a^3*b*d-16*a^3*b*e+80*a^3*b*g-80*a^3*b*h-24*a^3*c^2+16*a^3*c*d+16*a^3*c*e-48*a^3*c*g+80*a^3*c*h+8*a^3*d^2-16*a^3*d*e+16*a^3*d*g-16*a^3*d*h+8*a^3*e^2+16*a^3*e*g+16*a^3*e*h-24*a^3*g^2+48*a^3*g*h-24*a^3*h^2-24*a^2*b^3+24*a^2*b^2*c-72*a^2*b^2*d+24*a^2*b^2*e-72*a^2*b^2*g+24*a^2*b^2*h+24*a^2*b*c^2+16*a^2*b*c*d-16*a^2*b*c*e+80*a^2*b*c*g-80*a^2*b*c*h-40*a^2*b*d^2+48*a^2*b*d*e-16*a^2*b*d*g-16*a^2*b*d*h-8*a^2*b*e^2-48*a^2*b*e*g-16*a^2*b*e*h+56*a^2*b*g^2-80*a^2*b*g*h+24*a^2*b*h^2-24*a^2*c^3+56*a^2*c^2*d-8*a^2*c^2*e-8*a^2*c^2*g+56*a^2*c^2*h-40*a^2*c*d^2+16*a^2*c*d*e-16*a^2*c*d*g-48*a^2*c*d*h+24*a^2*c*e^2-16*a^2*c*e*g-16*a^2*c*e*h-8*a^2*c*g^2+80*a^2*c*g*h-72*a^2*c*h^2+8*a^2*d^3-8*a^2*d^2*e+24*a^2*d^2*g-8*a^2*d^2*h-8*a^2*d*e^2+16*a^2*d*e*g+48*a^2*d*e*h-8*a^2*d*g^2-16*a^2*d*g*h+24*a^2*d*h^2+8*a^2*e^3-40*a^2*e^2*g-40*a^2*e^2*h+56*a^2*e*g^2+16*a^2*e*g*h-72*a^2*e*h^2-24*a^2*g^3+24*a^2*g^2*h+24*a^2*g*h^2-24*a^2*h^3+36*a*b^4-80*a*b^3*c+80*a*b^3*d-16*a*b^3*e+16*a*b^3*g+48*a*b^3*h+24*a*b^2*c^2-80*a*b^2*c*d-16*a*b^2*c*e-16*a*b^2*c*g-80*a*b^2*c*h+56*a*b^2*d^2-48*a*b^2*d*e-16*a*b^2*d*g+80*a*b^2*d*h-8*a*b^2*e^2+48*a*b^2*e*g-16*a*b^2*e*h-40*a*b^2*g^2+16*a*b^2*g*h+24*a*b^2*h^2+48*a*b*c^3-80*a*b*c^2*d+80*a*b*c^2*e-16*a*b*c^2*g+16*a*b*c^2*h+16*a*b*c*d^2-32*a*b*c*d*e+32*a*b*c*d*g-32*a*b*c*d*h+16*a*b*c*e^2-32*a*b*c*e*g+32*a*b*c*e*h+16*a*b*c*g^2-32*a*b*c*g*h+16*a*b*c*h^2+16*a*b*d^3-48*a*b*d^2*e-16*a*b*d^2*g+16*a*b*d^2*h+48*a*b*d*e^2-32*a*b*d*e*g-32*a*b*d*e*h-16*a*b*d*g^2+32*a*b*d*g*h-16*a*b*d*h^2-16*a*b*e^3+48*a*b*e^2*g+16*a*b*e^2*h-48*a*b*e*g^2-32*a*b*e*g*h+80*a*b*e*h^2+16*a*b*g^3+16*a*b*g^2*h-80*a*b*g*h^2+48*a*b*h^3-28*a*c^4+80*a*c^3*d-48*a*c^3*e+16*a*c^3*g+16*a*c^3*h-72*a*c^2*d^2+80*a*c^2*d*e-16*a*c^2*d*g-48*a*c^2*d*h-8*a*c^2*e^2-16*a*c^2*e*g-16*a*c^2*e*h+24*a*c^2*g^2+16*a*c^2*g*h-40*a*c^2*h^2+16*a*c*d^3-16*a*c*d^2*e-16*a*c*d^2*g+48*a*c*d^2*h-16*a*c*d*e^2+32*a*c*d*e*g-32*a*c*d*e*h-16*a*c*d*g^2-32*a*c*d*g*h+48*a*c*d*h^2+16*a*c*e^3-16*a*c*e^2*g-16*a*c*e^2*h-16*a*c*e*g^2+32*a*c*e*g*h-16*a*c*e*h^2+16*a*c*g^3-16*a*c*g^2*h-16*a*c*g*h^2+16*a*c*h^3+4*a*d^4-16*a*d^3*e+16*a*d^3*g-16*a*d^3*h+24*a*d^2*e^2-16*a*d^2*e*g+48*a*d^2*e*h-8*a*d^2*g^2+16*a*d^2*g*h-8*a*d^2*h^2-16*a*d*e^3-16*a*d*e^2*g-48*a*d*e^2*h+80*a*d*e*g^2-32*a*d*e*g*h-48*a*d*e*h^2-48*a*d*g^3+80*a*d*g^2*h-16*a*d*g*h^2-16*a*d*h^3+4*a*e^4+16*a*e^3*g+16*a*e^3*h-72*a*e^2*g^2+16*a*e^2*g*h+56*a*e^2*h^2+80*a*e*g^3-80*a*e*g^2*h-80*a*e*g*h^2+80*a*e*h^3-28*a*g^4+48*a*g^3*h+24*a*g^2*h^2-80*a*g*h^3+36*a*h^4-12*b^5+36*b^4*c-28*b^4*d+4*b^4*e+4*b^4*g-28*b^4*h-24*b^3*c^2+48*b^3*c*d+16*b^3*c*e-16*b^3*c*g+80*b^3*c*h-24*b^3*d^2+16*b^3*d*e+16*b^3*d*g-48*b^3*d*h+8*b^3*e^2-16*b^3*e*g+16*b^3*e*h+8*b^3*g^2+16*b^3*g*h-24*b^3*h^2-24*b^2*c^3+24*b^2*c^2*d-72*b^2*c^2*e+24*b^2*c^2*g-72*b^2*c^2*h+24*b^2*c*d^2+16*b^2*c*d*e-16*b^2*c*d*g+80*b^2*c*d*h-40*b^2*c*e^2+48*b^2*c*e*g-16*b^2*c*e*h-8*b^2*c*g^2-48*b^2*c*g*h+56*b^2*c*h^2-24*b^2*d^3+56*b^2*d^2*e-8*b^2*d^2*g-8*b^2*d^2*h-40*b^2*d*e^2+16*b^2*d*e*g-16*b^2*d*e*h+24*b^2*d*g^2-16*b^2*d*g*h-8*b^2*d*h^2+8*b^2*e^3-8*b^2*e^2*g+24*b^2*e^2*h-8*b^2*e*g^2+16*b^2*e*g*h-8*b^2*e*h^2+8*b^2*g^3-40*b^2*g^2*h+56*b^2*g*h^2-24*b^2*h^3+36*b*c^4-80*b*c^3*d+80*b*c^3*e-16*b*c^3*g+16*b*c^3*h+24*b*c^2*d^2-80*b*c^2*d*e-16*b*c^2*d*g-16*b*c^2*d*h+56*b*c^2*e^2-48*b*c^2*e*g-16*b*c^2*e*h-8*b*c^2*g^2+48*b*c^2*g*h-40*b*c^2*h^2+48*b*c*d^3-80*b*c*d^2*e+80*b*c*d^2*g-16*b*c*d^2*h+16*b*c*d*e^2-32*b*c*d*e*g+32*b*c*d*e*h+16*b*c*d*g^2-32*b*c*d*g*h+16*b*c*d*h^2+16*b*c*e^3-48*b*c*e^2*g-16*b*c*e^2*h+48*b*c*e*g^2-32*b*c*e*g*h-16*b*c*e*h^2-16*b*c*g^3+48*b*c*g^2*h-48*b*c*g*h^2+16*b*c*h^3-28*b*d^4+80*b*d^3*e-48*b*d^3*g+16*b*d^3*h-72*b*d^2*e^2+80*b*d^2*e*g-16*b*d^2*e*h-8*b*d^2*g^2-16*b*d^2*g*h+24*b*d^2*h^2+16*b*d*e^3-16*b*d*e^2*g-16*b*d*e^2*h-16*b*d*e*g^2+32*b*d*e*g*h-16*b*d*e*h^2+16*b*d*g^3-16*b*d*g^2*h-16*b*d*g*h^2+16*b*d*h^3+4*b*e^4-16*b*e^3*g+16*b*e^3*h+24*b*e^2*g^2-16*b*e^2*g*h-8*b*e^2*h^2-16*b*e*g^3-16*b*e*g^2*h+80*b*e*g*h^2-48*b*e*h^3+4*b*g^4+16*b*g^3*h-72*b*g^2*h^2+80*b*g*h^3-28*b*h^4-12*c^5+36*c^4*d-28*c^4*e+4*c^4*g+4*c^4*h-24*c^3*d^2+48*c^3*d*e+16*c^3*d*g-16*c^3*d*h-24*c^3*e^2+16*c^3*e*g+16*c^3*e*h+8*c^3*g^2-16*c^3*g*h+8*c^3*h^2-24*c^2*d^3+24*c^2*d^2*e-72*c^2*d^2*g+24*c^2*d^2*h+24*c^2*d*e^2+16*c^2*d*e*g-16*c^2*d*e*h-40*c^2*d*g^2+48*c^2*d*g*h-8*c^2*d*h^2-24*c^2*e^3+56*c^2*e^2*g-8*c^2*e^2*h-40*c^2*e*g^2+16*c^2*e*g*h+24*c^2*e*h^2+8*c^2*g^3-8*c^2*g^2*h-8*c^2*g*h^2+8*c^2*h^3+36*c*d^4-80*c*d^3*e+80*c*d^3*g-16*c*d^3*h+24*c*d^2*e^2-80*c*d^2*e*g-16*c*d^2*e*h+56*c*d^2*g^2-48*c*d^2*g*h-8*c*d^2*h^2+48*c*d*e^3-80*c*d*e^2*g+80*c*d*e^2*h+16*c*d*e*g^2-32*c*d*e*g*h+16*c*d*e*h^2+16*c*d*g^3-48*c*d*g^2*h+48*c*d*g*h^2-16*c*d*h^3-28*c*e^4+80*c*e^3*g-48*c*e^3*h-72*c*e^2*g^2+80*c*e^2*g*h-8*c*e^2*h^2+16*c*e*g^3-16*c*e*g^2*h-16*c*e*g*h^2+16*c*e*h^3+4*c*g^4-16*c*g^3*h+24*c*g^2*h^2-16*c*g*h^3+4*c*h^4-12*d^5+36*d^4*e-28*d^4*g+4*d^4*h-24*d^3*e^2+48*d^3*e*g+16*d^3*e*h-24*d^3*g^2+16*d^3*g*h+8*d^3*h^2-24*d^2*e^3+24*d^2*e^2*g-72*d^2*e^2*h+24*d^2*e*g^2+16*d^2*e*g*h-40*d^2*e*h^2-24*d^2*g^3+56*d^2*g^2*h-40*d^2*g*h^2+8*d^2*h^3+36*d*e^4-80*d*e^3*g+80*d*e^3*h+24*d*e^2*g^2-80*d*e^2*g*h+56*d*e^2*h^2+48*d*e*g^3-80*d*e*g^2*h+16*d*e*g*h^2+16*d*e*h^3-28*d*g^4+80*d*g^3*h-72*d*g^2*h^2+16*d*g*h^3+4*d*h^4-12*e^5+36*e^4*g-28*e^4*h-24*e^3*g^2+48*e^3*g*h-24*e^3*h^2-24*e^2*g^3+24*e^2*g^2*h+24*e^2*g*h^2-24*e^2*h^3+36*e*g^4-80*e*g^3*h+24*e*g^2*h^2+48*e*g*h^3-28*e*h^4-12*g^5+36*g^4*h-24*g^3*h^2-24*g^2*h^3+36*g*h^4-12*h^5)*r^2+(-48*a^3+48*a^2*b-80*a^2*c-16*a^2*d-16*a^2*e-80*a^2*g+48*a^2*h+48*a*b^2+32*a*b*c+96*a*b*d+32*a*b*e+96*a*b*g+32*a*b*h-80*a*c^2+96*a*c*d-32*a*c*e-32*a*c*g+96*a*c*h-16*a*d^2+32*a*d*e-32*a*d*g+32*a*d*h-16*a*e^2+96*a*e*g+96*a*e*h-80*a*g^2+32*a*g*h+48*a*h^2-48*b^3+48*b^2*c-80*b^2*d-16*b^2*e-16*b^2*g-80*b^2*h+48*b*c^2+32*b*c*d+96*b*c*e+32*b*c*g+96*b*c*h-80*b*d^2+96*b*d*e-32*b*d*g-32*b*d*h-16*b*e^2+32*b*e*g-32*b*e*h-16*b*g^2+96*b*g*h-80*b*h^2-48*c^3+48*c^2*d-80*c^2*e-16*c^2*g-16*c^2*h+48*c*d^2+32*c*d*e+96*c*d*g+32*c*d*h-80*c*e^2+96*c*e*g-32*c*e*h-16*c*g^2+32*c*g*h-16*c*h^2-48*d^3+48*d^2*e-80*d^2*g-16*d^2*h+48*d*e^2+32*d*e*g+96*d*e*h-80*d*g^2+96*d*g*h-16*d*h^2-48*e^3+48*e^2*g-80*e^2*h+48*e*g^2+32*e*g*h-80*e*h^2-48*g^3+48*g^2*h+48*g*h^2-48*h^3)*r^4+(-64*a-64*b-64*c-64*d-64*e-64*g-64*h)*r^6=0
注:\(a=a_1,b=a_2,c=a_3,d=a_4,e=a_5,g=a_6,h=a_7\)
|
|