| 
 73914| 30
 | [讨论] 一个简单的不定积分,Mathematica是怎么算的? | 
| 
 | ||
| 毋因群疑而阻独见  毋任己意而废人言 毋私小惠而伤大体 毋借公论以快私情 | ||
| 
 点评
x为什么不能大于2呢?说是bug未免有些武断 
 | ||
| 毋因群疑而阻独见  毋任己意而废人言 毋私小惠而伤大体 毋借公论以快私情 | ||
| 
 | ||
| 毋因群疑而阻独见  毋任己意而废人言 毋私小惠而伤大体 毋借公论以快私情 | ||
| 
 点评
这些都是\(\int{\sqrt{-x^2 + 2 x}dx}\)的结果:\[\frac{(x-1)\sqrt{x(x-2)}}{2}+\arctan\sqrt\frac{x}{2-x}\\\frac{(x-1)\sqrt{x(2-x)}+\arcsin(x-1)}{2}\] 
 
\[\frac{\sqrt{-x(x-2)}[(x-1)\sqrt{x(x-2)}-2 \ln(\sqrt{x-2}+\sqrt{x})]}{2\sqrt{x(x-2)}}\\\frac{i(x-1)\sqrt{x(x-2)}}{2}-i\ln(\sqrt{x-2}+\sqrt{x})\\\frac{(x-1)\sqrt{x(x-2)}}{2}+\arcsin\sqrt\frac{x}{2}\] 
 | ||
| 毋因群疑而阻独见  毋任己意而废人言 毋私小惠而伤大体 毋借公论以快私情 | ||
| 
 | ||
| 毋因群疑而阻独见  毋任己意而废人言 毋私小惠而伤大体 毋借公论以快私情 | ||
| 
 点评
由以上,能否得出:\[\arcsin(z-1)+\frac{3}{2}(z - 1)\sqrt{z(2-z)}=\ln(\sqrt{z-2}+\sqrt z)\] 
 评分 | ||
| 毋因群疑而阻独见  毋任己意而废人言 毋私小惠而伤大体 毋借公论以快私情 | ||
| 
 | ||
| 毋因群疑而阻独见  毋任己意而废人言 毋私小惠而伤大体 毋借公论以快私情 | ||
| 
 | ||
| 毋因群疑而阻独见  毋任己意而废人言 毋私小惠而伤大体 毋借公论以快私情 | ||
| 
 | ||
| 毋因群疑而阻独见  毋任己意而废人言 毋私小惠而伤大体 毋借公论以快私情 | ||
小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )
GMT+8, 2025-10-31 07:04 , Processed in 0.028807 second(s), 18 queries .
Powered by Discuz! X3.5
© 2001-2025 Discuz! Team.