找回密码
 欢迎注册
楼主: mathe

[原创] 再来一个随机漫游问题

[复制链接]
发表于 2008-7-22 18:24:27 | 显示全部楼层
Input x value(0 to EXIT):4 m(total) = 9, n(odd) = 8 Input x value(0 to EXIT):4 m(total) = 16, n(odd) = 11 Input x value(0 to EXIT):4 m(total) = 16, n(odd) = 12 Input x value(0 to EXIT):0
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-7-22 18:25:23 | 显示全部楼层
弄反了 呵呵
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-7-22 18:26:51 | 显示全部楼层
如果每次以均等概率向前走x的距离或者向后走1的距离(x>1),那么最后能够返回起始位置(或之前)的概率是多少? 你的叙述有问题啊 我怎么看都是进四退一
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-7-22 18:39:01 | 显示全部楼层
进一退四统计,100亿步一次 Input x value(0 to EXIT):4 m(total) = 48117920, n(odd) = 15840711 Input x value(0 to EXIT):4 m(total) = 48117253, n(odd) = 15838770 Input x value(0 to EXIT):4 m(total) = 48122812, n(odd) = 15840396 Input x value(0 to EXIT):4 m(total) = 48124744, n(odd) = 15846027 Input x value(0 to EXIT):4 m(total) = 48110844, n(odd) = 15840923 Input x value(0 to EXIT):6 m(total) = 49584614, n(odd) = 16482942 Input x value(0 to EXIT):6 m(total) = 49589706, n(odd) = 16482016 Input x value(0 to EXIT):6 m(total) = 49586066, n(odd) = 16490295 Input x value(0 to EXIT):6 m(total) = 49591330, n(odd) = 16480975 Input x value(0 to EXIT):6 m(total) = 49595902, n(odd) = 16488322 Input x value(0 to EXIT):2 m(total) = 38202180, n(odd) = 11793733 Input x value(0 to EXIT):2 m(total) = 38175144, n(odd) = 11793327 Input x value(0 to EXIT):2 m(total) = 38206908, n(odd) = 11807184 Input x value(0 to EXIT):2 m(total) = 38188778, n(odd) = 11802628 Input x value(0 to EXIT):2 m(total) = 38182240, n(odd) = 11798944 Input x value(0 to EXIT):3 m(total) = 45636711, n(odd) = 29560213 Input x value(0 to EXIT):3 m(total) = 45629128, n(odd) = 29558530 Input x value(0 to EXIT):3 m(total) = 45634767, n(odd) = 29558059 Input x value(0 to EXIT):3 m(total) = 45635516, n(odd) = 29561502 Input x value(0 to EXIT):3 m(total) = 45626236, n(odd) = 29554450 Input x value(0 to EXIT):5 m(total) = 49138383, n(odd) = 32576368 Input x value(0 to EXIT):5 m(total) = 49134223, n(odd) = 32568252 Input x value(0 to EXIT):5 m(total) = 49132382, n(odd) = 32566402 Input x value(0 to EXIT):5 m(total) = 49132123, n(odd) = 32561868 Input x value(0 to EXIT):5 m(total) = 49133693, n(odd) = 32569478 Input x value(0 to EXIT):5 m(total) = 49137184, n(odd) = 32568205 Input x value(0 to EXIT):7 m(total) = 49803695, n(odd) = 33156991 Input x value(0 to EXIT):7 m(total) = 49789106, n(odd) = 33148352 Input x value(0 to EXIT):7 m(total) = 49796451, n(odd) = 33150304 Input x value(0 to EXIT):7 m(total) = 49801007, n(odd) = 33157712 Input x value(0 to EXIT):7 m(total) = 49798112, n(odd) = 33154522 Input x value(0 to EXIT):0 [ 本帖最后由 无心人 于 2008-7-22 18:49 编辑 ]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-7-22 18:49:54 | 显示全部楼层
原帖由 无心人 于 2008-7-22 18:26 发表 如果每次以均等概率向前走x的距离或者向后走1的距离(x>1),那么最后能够返回起始位置(或之前)的概率是多少? 你的叙述有问题啊 我怎么看都是进四退一
这个式引用过去的题目,我现在将题目格式修改了一下
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-7-22 19:04:05 | 显示全部楼层
上面是n=0结果 似乎不是1/2
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-7-22 20:25:07 | 显示全部楼层
起点是10000 Input x value(0 to EXIT):2 m(total) = 5001, n(odd) = 1901 Input x value(0 to EXIT):2 m(total) = 4999, n(odd) = 1848 Input x value(0 to EXIT):2 m(total) = 5000, n(odd) = 1880 Input x value(0 to EXIT):3 m(total) = 9998, n(odd) = 3445 Input x value(0 to EXIT):3 m(total) = 10000, n(odd) = 3459 Input x value(0 to EXIT):3 m(total) = 9998, n(odd) = 3562 Input x value(0 to EXIT):4 m(total) = 14994, n(odd) = 6666 Input x value(0 to EXIT):4 m(total) = 14999, n(odd) = 6840 Input x value(0 to EXIT):4 m(total) = 15001, n(odd) = 6703 Input x value(0 to EXIT):5 m(total) = 19990, n(odd) = 8472 Input x value(0 to EXIT):5 m(total) = 20003, n(odd) = 8454 Input x value(0 to EXIT):5 m(total) = 19990, n(odd) = 8398 Input x value(0 to EXIT):6 m(total) = 24993, n(odd) = 11732 Input x value(0 to EXIT):6 m(total) = 24994, n(odd) = 11792 Input x value(0 to EXIT):6 m(total) = 24994, n(odd) = 11660 Input x value(0 to EXIT):11 m(total) = 49968, n(odd) = 23422 Input x value(0 to EXIT):11 m(total) = 49975, n(odd) = 23370 Input x value(0 to EXIT):100 m(total) = 492558, n(odd) = 243975 Input x value(0 to EXIT):100 m(total) = 492694, n(odd) = 243656 Input x value(0 to EXIT):999 m(total) = 4545113, n(odd) = 2274285 Input x value(0 to EXIT):999 m(total) = 4545223, n(odd) = 2272897 Input x value(0 to EXIT):999 m(total) = 4545125, n(odd) = 2273335 Input x value(0 to EXIT):1000 m(total) = 4545749, n(odd) = 2269768 Input x value(0 to EXIT):1000 m(total) = 4545780, n(odd) = 2269447 Input x value(0 to EXIT):1000 m(total) = 4545918, n(odd) = 2270471 Input x value(0 to EXIT):0
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-7-22 21:49:10 | 显示全部楼层
呵呵,回复帖子超过mathe 1000了 下个目标是超gxq 2000 哈哈
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-7-24 16:08:00 | 显示全部楼层
111111111111111111
t1.jpg
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-7-24 16:08:30 | 显示全部楼层
22222222222222222222222
t2.jpg
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-27 11:56 , Processed in 0.037233 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表