找回密码
 欢迎注册
楼主: 0→∞

[求助] 果树问题讨论:这两个问题等价么?

  [复制链接]
发表于 2009-7-3 07:38:03 | 显示全部楼层
由于每24小时只能上传2M,没办法只能上传好几次..... 组合几何.part01.rar (488.28 KB, 下载次数: 13) 组合几何.part02.rar (488.28 KB, 下载次数: 4) 组合几何.part03.rar (488.28 KB, 下载次数: 4) 组合几何.part04.rar (488.28 KB, 下载次数: 4) 组合几何.part06.rar (488.28 KB, 下载次数: 4) 组合几何.part05.rar (488.28 KB, 下载次数: 4) 组合几何.part07.rar (488.28 KB, 下载次数: 4) 组合几何.part08.rar (488.28 KB, 下载次数: 4) 组合几何.part09.rar (488.28 KB, 下载次数: 4) 组合几何.part10.rar (488.28 KB, 下载次数: 4) 组合几何.part11.rar (488.28 KB, 下载次数: 4) 组合几何.part12.rar (142.94 KB, 下载次数: 5)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-3 07:47:06 | 显示全部楼层
现在已统一上调了上限。 各用户组的权限可点击如下页面:http://bbs.emath.ac.cn/memcp.php?action=usergroups
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-3 08:57:36 | 显示全部楼层
呵,还有5个文件没法上传,只能明天再传了哟....
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-3 09:28:40 | 显示全部楼层
t_i的定义我清楚.主要是里面包含多少直线的问题.应该是要求所有被这n个点确定的直线都要算进去,是不是? mathe 发表于 2009-7-2 18:03
应该是要求所有被这n个点确定的直线都要算进去。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-3 11:17:18 | 显示全部楼层
嗯,看数学星空贴出的证明过程,的确应该是如此. 如果这样,sheng_jianguo上面贴出的结果基本上没有问题了.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-3 11:28:16 | 显示全部楼层
呵,还有5个文件没法上传,只能明天再传了哟.... 数学星空 发表于 2009-7-3 08:57
我已转账给你了100金币,你可用它购买成“天使保护组”成员,它将可以解除一些限制,提高权限。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-3 12:50:38 | 显示全部楼层
仔细分析前面maxt4的证明可以推出以下一些结果,不知是否对研究20棵树植树问题有帮助: 设P为射影平面上的n(>2)个点,ti(3≤i≤n)为恰经过其中i个点的直线数,fi(4≤i≤n)为P对偶中恰有i条边的区域数,则有 t2=3+3+t4+2t5+3t6+…+f4+2f5+3f6+… 另一方面 t2=C(n,2)-C(3,2)t3-C(4,2)t4-C(5,2)t5-C(6,2)t6-… 得 t4=(n+2)(n-3)/2-(3t3+12t5+33t6+…+f4+2f5+3f6+…)/7 这说明,为了使t4达到最大,可改变n个点的位置,使t3,t5,t6,…,f4,f5,f6,…尽可能小。       (待续)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-3 13:02:11 | 显示全部楼层
现在讨论n=20(20棵树植树问题)的情况。 并且在假定t5=t6=t7=…=0(即任何一行树不会超过4棵) 的情况下讨论 按前面分析,得 t4=26+[5-(3t3+f4+2f5+3f6+…)]/7 由此得出: 若有t4=26(即20棵树,每行4棵的有26行)则必须满足5-(3t3+f4+2f5+3f6+…)=0 若有t4=25(即20棵树,每行4棵的有25行)则必须满足12-(3t3+f4+2f5+3f6+…)=0 若有t4=24(即20棵树,每行4棵的有24行)则必须满足19-(3t3+f4+2f5+3f6+…)=0 以上结果对研究20棵树植树问题可能没多大用处,仅供参考。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-3 13:37:38 | 显示全部楼层
举例说明上面公式用处: 如要证明t4=26是不存在的。只要证明 平面上任意20根直线,若恰3根直线相交点的共有t3个(无恰超过4根直线相交点),且这20根直线将平面划分成的四边形个数+2倍五边形个数+3倍六边形个数+4倍七边形个数+5倍八边形个数+3t3大于5。则恰4根直线相交点的个数小于26个。(当然也不容易证明)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-3 14:31:45 | 显示全部楼层
本帖最后由 数学星空 于 2009-7-3 14:40 编辑 也就是说,若存在t4=26,则只有八种情况以下为被直线分割成的区域形状数目) (1) 四边形个数4个, 五边形1个,其它多边形无 (2) 三边形1个,五边形1个,其它多边形无(最多3*1+5*1=8<20不可能) (3) 三边形1个,四边形2个,其它多边形无(最多3*1+5*2=13<20不可能) (4) 四边形1个,五边形2个,其它多边形无(最多4*1+5*2=14<20不可能) (5)五边形1个,六边形1个,其它多边形无(最多5*1+6*1=11<20不可能) (6)四边形2个,六边形1个,其它多边形无(最多4*2+6*1=14<20不可能) (7)四边形1个,七边形1个,其它多边形无(最多4*1+7*1=11<20不可能) (8)八边形1个,其它多边形无(最多8<20不可能) 即只有一种可能性,四边形4个,五边形1个的区域分布....剩下就是如何构造了!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-23 15:30 , Processed in 0.027139 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表