- 注册时间
- 2008-11-26
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 149507
- 在线时间
- 小时
|
发表于 2021-1-19 08:54:10
|
显示全部楼层
本帖最后由 mathematica 于 2021-1-19 12:37 编辑
- Clear["Global`*"];
- ans=FullSimplify@Solve[{
- AC^2+1^2==AP^2,(*勾股定理*)
- AC^2+(1+3)^2==AB^2,(*勾股定理*)
- cosAPC==1/AP,(*余弦定义*)
- cosB==4/AB,(*余弦定义*)
- cosAPC==4*cosB^3-3*cosB,(*三倍角公式*)
- AC>=0&&AP>=0&&AB>=0(*限制变量范围*)
- },{AC,AP,AB,cosAPC,cosB}];
- aaa=Grid[ans]
复制代码
求解结果:
\[\begin{array}{ccccc}
\text{AC}\to 0 & \text{AP}\to 1 & \text{AB}\to 4 & \text{cosAPC}\to 1 & \text{cosB}\to 1 \\
\text{AC}\to \frac{4}{\sqrt{11}} & \text{AP}\to 3 \sqrt{\frac{3}{11}} & \text{AB}\to 8 \sqrt{\frac{3}{11}} & \text{cosAPC}\to \frac{\sqrt{\frac{11}{3}}}{3} & \text{cosB}\to \frac{\sqrt{\frac{11}{3}}}{2} \\
\end{array}\]
- Clear["Global`*"];
- ans=FullSimplify@Solve[{
- AC^2+1^2==AP^2,(*勾股定理*)
- AC^2+(1+3)^2==AB^2,(*勾股定理*)
- cosAPC==1/AP,(*余弦定义*)
- cosB==4/AB,(*余弦定义*)
- cosAPC==4*cosB^3-3*cosB(*三倍角公式*)
- },{AC,AP,AB,cosAPC,cosB}];
- aaa=Grid[ans,Alignment->Left]
复制代码
\[\begin{array}{lllll}
\text{AC}\to 0 & \text{AP}\to -1 & \text{AB}\to -4 & \text{cosAPC}\to -1 & \text{cosB}\to -1 \\
\text{AC}\to 0 & \text{AP}\to 1 & \text{AB}\to 4 & \text{cosAPC}\to 1 & \text{cosB}\to 1 \\
\text{AC}\to -4 \sqrt{\frac{7}{13}} & \text{AP}\to 5 \sqrt{\frac{5}{13}} & \text{AB}\to -8 \sqrt{\frac{5}{13}} & \text{cosAPC}\to \frac{\sqrt{\frac{13}{5}}}{5} & \text{cosB}\to -\frac{\sqrt{\frac{13}{5}}}{2} \\
\text{AC}\to 4 \sqrt{\frac{7}{13}} & \text{AP}\to 5 \sqrt{\frac{5}{13}} & \text{AB}\to -8 \sqrt{\frac{5}{13}} & \text{cosAPC}\to \frac{\sqrt{\frac{13}{5}}}{5} & \text{cosB}\to -\frac{\sqrt{\frac{13}{5}}}{2} \\
\text{AC}\to -4 \sqrt{\frac{7}{13}} & \text{AP}\to -5 \sqrt{\frac{5}{13}} & \text{AB}\to 8 \sqrt{\frac{5}{13}} & \text{cosAPC}\to -\frac{\sqrt{\frac{13}{5}}}{5} & \text{cosB}\to \frac{\sqrt{\frac{13}{5}}}{2} \\
\text{AC}\to 4 \sqrt{\frac{7}{13}} & \text{AP}\to -5 \sqrt{\frac{5}{13}} & \text{AB}\to 8 \sqrt{\frac{5}{13}} & \text{cosAPC}\to -\frac{\sqrt{\frac{13}{5}}}{5} & \text{cosB}\to \frac{\sqrt{\frac{13}{5}}}{2} \\
\text{AC}\to -\frac{4}{\sqrt{11}} & \text{AP}\to -3 \sqrt{\frac{3}{11}} & \text{AB}\to -8 \sqrt{\frac{3}{11}} & \text{cosAPC}\to -\frac{\sqrt{\frac{11}{3}}}{3} & \text{cosB}\to -\frac{\sqrt{\frac{11}{3}}}{2} \\
\text{AC}\to \frac{4}{\sqrt{11}} & \text{AP}\to -3 \sqrt{\frac{3}{11}} & \text{AB}\to -8 \sqrt{\frac{3}{11}} & \text{cosAPC}\to -\frac{\sqrt{\frac{11}{3}}}{3} & \text{cosB}\to -\frac{\sqrt{\frac{11}{3}}}{2} \\
\text{AC}\to -\frac{4}{\sqrt{11}} & \text{AP}\to 3 \sqrt{\frac{3}{11}} & \text{AB}\to 8 \sqrt{\frac{3}{11}} & \text{cosAPC}\to \frac{\sqrt{\frac{11}{3}}}{3} & \text{cosB}\to \frac{\sqrt{\frac{11}{3}}}{2} \\
\text{AC}\to \frac{4}{\sqrt{11}} & \text{AP}\to 3 \sqrt{\frac{3}{11}} & \text{AB}\to 8 \sqrt{\frac{3}{11}} & \text{cosAPC}\to \frac{\sqrt{\frac{11}{3}}}{3} & \text{cosB}\to \frac{\sqrt{\frac{11}{3}}}{2} \\
\end{array}\]
|
|