找回密码
 欢迎注册
楼主: wayne

[提问] Yet another Diophantine Equation

[复制链接]
发表于 2009-5-22 15:56:57 | 显示全部楼层
而如果$4/n=1/x+1/y+1/z$,那么对于n的任意倍数$nd$,必然有拆分$4/{nd}=1/{xd}+1/{yd}+1/{zd}$ 所以余下只要解决所有形如4k+1的素数n就可以了 而其中8k+5形式的也很好办 $4/{8k+5}={4(6k+4)}/{(8k+5)(6k+4)}={3(8k+5)+1}/{(8k+5)(6k+4)}=1/{6k+4}+1/{3k+2}+1/{(8k+5)(6k+4)}$ 所以余下只有8k+1形式的素数
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-5-22 15:59:45 | 显示全部楼层
对于8k+1,如果$k-=1(mod 3)$,那么 $4/{8k+1}=1/{2k+1}+3/{(8k+1)(2k+1)}$是两个埃及分数之和,将任意一个再拆分成两个即可
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-5-22 17:40:58 | 显示全部楼层
关于方程$1/p=1/x+1/y+1/z$的特解,我可以给出很多的: $1/p=1/{p+1}+1/{p^2+p+1}+1/{p(p+1)(p^2+p+1)}$ $1/p=1/(p+1)+1/{(p+1)^2}+1/{(1+p)^2p}$ $1/p=1/(p+1)+1/{p(p+2)}+1/{p(p+1)(p+2)}$ $1/p=1/(p+1)+1/{p(2p+1)}+1/{(p+1)(2p+1)}$ $1/p=1/(p+1)+1/{2p(p+1)}+1/{2p(p+1)}$ $1/p=1/(p+2)+2/{p(p+3)}+2/{p(p+2)(p+3)}$ $1/p=1/(p+2)+2/{(p+1)(p+2)}+2/{p(p+1)(p+2)}$ $1/p=1/(2p)+1/(2p+1)+1/{2p(2p+1)}$ $1/p=1/(2p)+1/{2(p+1)}+1/{2p(p+1)}$ 但特解再多,也不能解决问题。。。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-5-22 17:50:30 | 显示全部楼层
再加一个: $1/p=1/(2p+1)+1/(2p+1)+1/{p(2p+1)}$ 不知道这些特解是否构成全集
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-5-22 18:56:34 | 显示全部楼层
方程$4/n=1/x+1/y+1/z$的解如果编程的话,很好给出前面几十个数的所有解: n=20时, {{6, 31, 930}, {6, 32, 480}, {6, 33, 330}, {6, 34, 255}, {6, 35, 210}, {6, 36, 180}, {6, 39, 130}, {6, 40, 120}, {6, 42, 105}, {6, 45, 90}, {6, 48, 80}, {6, 50, 75}, {6, 55, 66}, {7, 18, 630}, {7, 20, 140}, {7, 21, 105}, {7, 30, 42}, {8, 14, 280}, {8, 15, 120}, {8,16, 80}, {8, 20, 40}, {8, 24, 30}, {9, 12, 180}, {9, 15, 45}, {9, 18, 30}, {10, 11, 110}, {10, 12, 60}, {10, 14, 35}, {10, 15, 30}, {12, 15, 20}} n=21时, {{6, 43, 1806}, {6, 44, 924}, {6, 45, 630}, {6, 46, 483}, {6, 48, 336}, {6, 49, 294}, {6, 51, 238}, {6, 54, 189}, {6, 56, 168}, {6, 60, 140}, {6, 63, 126}, {6, 70, 105}, {6, 78, 91}, {7, 22, 462}, {7,24, 168}, {7, 28, 84}, {7, 30, 70}, {8, 16, 336}, {8, 21, 56}, {8, 24, 42}, {9, 14, 126}, {9, 18, 42}, {10, 12, 140}, {10, 15, 42}, {12, 14, 28}} 。。。。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-5-22 19:09:39 | 显示全部楼层
n=100时,有156个解
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-5-24 08:56:15 | 显示全部楼层
楼主对这个问题研究得比较深了。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-6-13 11:06:51 | 显示全部楼层
顺便请教高人: 求方程1/x1+1/x2+.....+1/xn=1,且x1,x2,....,xn为两两互素的正整数解? 注:x1,x2,....,xn任两个不能相等哟
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-6-13 16:29:38 | 显示全部楼层
顺便请教高人: 求方程1/x1+1/x2+.....+1/xn=1,且x1,x2,....,xn为两两互素的正整数解? 注:x1,x2,....,xn任两个不能相等哟 数学星空 发表于 2009-6-13 11:06
两两互素显然无解. 方程两边同时乘上$x_1x_2...x_{n-1}$左边不是整数
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-6-14 16:06:28 | 显示全部楼层
本帖最后由 数学星空 于 2009-6-14 16:19 编辑 求方程1/x1+1/x2+.....+1/xn=1,且x1,x2,....,xn任m个没有大于1的公因子的所有正整数解? 当m=2时,对哪些n存在正整数解x1,x2,...,xn? 当m为何值时,对任何的n必有正整数解x1,x2,....,xn?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-23 02:11 , Processed in 0.024541 second(s), 14 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表