找回密码
 欢迎注册
楼主: mathe

[讨论] 毒酒问题(加强版)

  [复制链接]
发表于 2009-6-8 23:41:52 | 显示全部楼层
n元集的一个子集族,任意两个的并不相等,求此族中集合最大数f(n).下面文章 http://www.emis.de/journals/EJC/Volume_3/PDF/v3i1r15.pdf 给出了构造(还没仔细看)宣称 f(3m)>m*3^(m-2) 映射到我们的问题,子集族每个集合代表酒桶,由于任两个集合的并不相同,从而可以根据其并判别是哪两个桶 由f(21)=f(3*7)>7*3^(7-2)=1701>1000 就是说21人!!! 2#中已经给出信息论界为19人 另 log2(C(1701, 2))=20.46
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-6-9 06:50:59 | 显示全部楼层
你找到的这个是不同的问题,叫families cancellative,是一个更弱的问题 AUB=AUC => B=C 不过发现我那个找到的结论上也还有o(1),也就是只有n很大的时候才使用,对于n=1000是多少还要具体构造出来才知道.不过估计要看懂那文章,至少它给出的几个引用论文都要看完才行.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-6-9 07:54:36 | 显示全部楼层
文章 Union-free Hypergraphs and Probability Theory (Peter Franki and Zoltan Furedi) 中 (19) 给出了$f(4n)>=2^n$的构造,也就是使用40个囚犯可以解决1024桶酒问题.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-6-9 08:00:13 | 显示全部楼层
42# mathe 看了那个构造确实如此,是个更弱一些的问题
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-6-9 08:06:57 | 显示全部楼层
43#提到的40个基本上快是极限了,我觉得不会有少于35个的方案,理由如下 首先那个A(n,8,7)已经相当紧密了,然后我们试着向其中再添加一些元素 即使我们能够将一个A(n,6,5)加A(n,4,3)巧妙的加进去,则根据23#的表格,也需要35个,而这似乎不太可能
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-6-9 08:16:30 | 显示全部楼层
39#的那篇文章的逼近形式有可能得出更好的结果. 不过里面的方法让人看不大懂. 其实用的方法应该同 Union-free Hypergraphs and Probability Theory 中定理II的方法类似.都使用了概率模型.不过两者都挺难看懂. 而39#那个文章中的过程当然更加复杂了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-6-9 08:23:18 | 显示全部楼层
43#中结果的构造方法倒是很简单. 我们将长度为n的0,1向量看成$F_{2^n}$中的数. 而记$I=(1,1,...,1)$也就是所有n个分量都是1的数. 对于4n个囚犯,可以分成4组X,Y,Z,W,每组n个囚犯 分别做$F_{2^n}$到各组n各囚犯构成集合的一一映射映射$g_1:F_{2^n} |->2^X,g_2:F_{2^n} |->2^Y,g_3:F_{2^n} |->2^Z,g_4:F_{2^n} |->2^W$ 于是集合 ${ g_1(a) uu g_2(I-a) uu g_3(a^3) uu g_4(I-a^3) | a in F_{2^n} }$ 就满足条件
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-6-9 12:25:31 | 显示全部楼层
现在基本理解39#楼方法的想法了. 我现在估算了一下,如果将39#楼的方法采用到1000个囚犯问题. 那么应该可以用39个囚犯解决1398桶左右的酒. 具体产生方法如下,对于39个元素的集合,拆分成15个元素的集合X和24个元素的集合Y. 对X中元素每三三分组成5组.并且每组中三个元素分别标上0,1,2三个数 然后如下选择X中的一些子集: 5组中任意选择1组,将三个元素全部选入,余下4组每组选择一个元素,但是要求所有选择的元素对应数字之和为3的倍数. 这样的子集总共有$5*3^3=135$个. 然后对于每个这样的子集,随机产生14个Y中子集,要求Y中每个元素被选中的概率为0.3. 这样我们可以构造出共135*14=1890个子集. 然后在其中遍历所有三个集合的组合A,B,C判断是否有$A uu B=A uu C$,同样遍历四个集合的组合A,B,C,D判断是否有$A uu B = C uu D$,如果出现这样的组合,从中任意淘汰一个集合. 我计算结果从概率上来说,平均来说淘汰后剩余大概为1398个集合,它们将满足条件.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-6-9 14:35:28 | 显示全部楼层
tq.zip (10.45 KB, 下载次数: 6) 写了个程序,实现上面的算法,得到一个39个囚犯1706桶酒的解(随机结果,重新运行结果会不同) 对于输出结果,每行代表一桶酒的喝法,有两个16进制数构成,前面一个15比特,后面一个24比特
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-6-9 14:52:47 | 显示全部楼层
发现这个方法可以找远远更加好的结果(只要增大k就可以了)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-14 23:56 , Processed in 0.026356 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表