找回密码
 欢迎注册
楼主: mathe

[原创] 凸函数问题

[复制链接]
 楼主| 发表于 2010-7-14 16:22:53 | 显示全部楼层
二阶导数大于0的是凸函数,相当于开口向上的抛物线
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-7-15 09:03:28 | 显示全部楼层
上面的证明方法基本上都不具有可读性。现在找到了一个方法,相对要简单很多: 首先,定义$F(x,y)=(xy)^s-(x+y)^s-1$,那么 ${dy}/{dx}=-{{del F}/{del x}}/{{del F}/{del y}}=-{x^{s-1}y^s-(x+y)^{s-1}}/{x^sy^{s-1}-(x+y)^{s-1}}$ 由于$(xy)^s=(x+y)^s+1$,上面表达式可以分子分母同时乘上$x+y$然后简化为 性质0.${dy}/{dx}=-{1+x^{s-1}y^{s+1}}/{1+x^{s+1}y^{s-1}}=-{(xy)^{-s}+y/x}/{(xy)^(-s)+x/y}$ 于是我们得到 性质1. ${dy}/{dx}<0$,或者说y关于x单调减 又由于${d(y+x)}/{dx}=1+{dy}/{dx}={x/y-y/x}/{(xy)^(-s)+x/y}$ 于是我们得到 性质2. 在$x>=y$时,$y+x$关于$x$单调增,在$x<=y$时,$y+x$关于$x$单调减 而我们又知道曲线上$x=y$的点是唯一存在的(也就是$x^{2s}-2^sx^s-1=0$的解),所以$y+x$是先减后增,而曲线上$x=y$的点是临界点 又由于$(xy)^s=(x+y)^s+1$,也就是$xy$随着$x+y$的增加而单调增加,根据性质2,我们得到 性质3. 在$x>=y$时,$xy$关于$x$单调增,在$x<=y$时,$xy$关于$x$单调减 性质4.如果$A>0$,那么函数${t-1/t}/{A+t}$在$t>0$严格增 这个是由${t-1/t}/{A+t}=1-A/{A+t}-1/{t(A+t)}$得到 性质5,如果$A(t)>0$是关于t的减函数,那么${t-1/t}/{A(t)+t}$在$t>=1$严格增; 如果$A(t)>0$是关于t的增函数,那么${t-1/t}/{A(t)+t}$在$00$,函数凸。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-15 09:14:41 | 显示全部楼层
11# mathe 很乱,我从小到大一直都是记着,开口向上为凹
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-15 09:17:55 | 显示全部楼层
wikipedia也站在mathe这一边, 不应该,我怎么会弄错了呢,我经历过高考,大学,怎么就没察觉出来呢
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-7-15 09:27:27 | 显示全部楼层
11# mathe 很乱,我从小到大一直都是记着,开口向上为凹 wayne 发表于 2010-7-15 09:14
呵呵,我刚开始学分析的时候也总是弄错,看上去开口向上的才是凹吗
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-15 09:36:37 | 显示全部楼层
15# mathe 这应该不是弄不弄错的问题,我的数学老师,还有考试试卷,肯定都是凹的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-15 09:41:49 | 显示全部楼层
我经历过那么多的考试,如果察觉了,肯定早改过来了。 ================================= 我是俯视着看函数图像的,mathe等应该是仰视着看吧,.....
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-15 09:51:16 | 显示全部楼层
不知道我对“凸”这个词是否理解错了: 如果观察对象 “向我这一边侵犯空间”,则是凸的,远离我则是凹的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-15 09:53:26 | 显示全部楼层
本帖最后由 wayne 于 2010-7-15 09:54 编辑 呵呵,有一个很形象的证据可以支撑我的“观察方式”是“对”的。 请君仔细看看凸这个字的形状:
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-15 09:56:40 | 显示全部楼层
看来“凸”这个概念很主观。 数学里有凸这个词真是糟糕透了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 00:15 , Processed in 0.023880 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表