找回密码
 欢迎注册
楼主: 数学星空

[讨论] 关于三角形的几个问题

[复制链接]
 楼主| 发表于 2010-8-2 19:34:37 | 显示全部楼层
不知有谁能将6#的方程组简化为一个关于r,a,b,c的代数方程? 这样就可以算出P点与内心的距离?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-8-3 10:43:16 | 显示全部楼层
11# 数学星空 6楼的方程好像过剩了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-8-3 19:38:53 | 显示全部楼层
本帖最后由 数学星空 于 2011-11-6 15:48 编辑 其实6#的方程组可以简化为(其实直接利用面积计算公式可以得到) $4*r^2*(a+y+z)^2=2*(a^2*y^2+a^2*z^2+y^2*z^2)-a^4-y^4-z^4$ $4*r^2*(b+x+z)^2=2*(b^2*x^2+b^2*z^2+x^2*z^2)-b^4-x^4-z^4$ $4*r^2*(c+y+x)^2=2*(c^2*y^2+c^2*x^2+y^2*x^2)-c^4-y^4-x^4$ $4* r^2*(2*(x+y+z)+a+b+c)^2=2*(a^2*b^2+a^2*c^2+b^2*c^2)-a^4-b^4-c^4$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-8-3 19:46:44 | 显示全部楼层
有趣的是: 作代换: $ a=a_1*r,b=b_1*r,c=c_1*r,x=x_1*r,y=y_1*r,z=z_1*r$有: $4*(a_1+y_1+z_1)^2=2*(a_1^2*y_1^2+a_1^2*z_1^2+y_1^2*z_1^2)-a_1^4-y_1^4-z_1^4$ $4*(b_1+x_1+z_1)^2=2*(b_1^2*x_1^2+b_1^2*z_1^2+x_1^2*z_1^2)-b_1^4-x_1^4-z_1^4$ $4*(c_1+y_1+x_1)^2=2*(c_1^2*y_1^2+c_1^2*x_1^2+y_1^2*x_1^2)-c_1^4-y_1^4-x_1^4$ $ 4*(2*(x_1+y_1+z_1)+a_1+b_1+c_1)^2=2*(x_1^2*y_1^2+x_1^2*z_1^2+y_1^2*z_1^2)-x_1^4-y_1^4-z_1^4$ 若数学计算软件可以消元的话,可以得到 \( r,a,b,c \) 的代数方程? 可惜我的电脑没能计算出来,不知有谁可以帮忙计算一下!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-8-4 19:47:34 | 显示全部楼层
通过几个数值计算发现:并不是所有的三角形(a,b,c)均存在正实数解(r,x,y,z)??? 并且根据6#和14#的方程组似乎只有在满足一定条件的三角形F(a,b,c)(关于三边长的代数方程,消元已超出了我的电脑能力)才能找到正实数解 等内切圆问题.pdf (121.63 KB, 下载次数: 16)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-8-5 14:54:46 | 显示全部楼层
(2) Congruent Incircles Point 这是通过硬算一个特殊三角形之后在 Encyclopedia of Triangle Centers 上查的, 标号是 X(258) trilinear coordinates (到三边距离之比) 是: $1/{\cos(B/2)+\cos(C/2)-\cos(A/2)}$ (轮换对称) 或$1+\sin(B/2)+\sin(C/2)-\sin(A/2)$ 或$\tan(A/2)-\sec(A/2)$

评分

参与人数 2威望 +6 金币 +2 贡献 +2 鲜花 +6 收起 理由
数学星空 + 2 + 2 多谢提供结果!
wayne + 6 + 6 神奇的网站,神奇的Wiley!!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-8-7 20:42:09 | 显示全部楼层
截图1281184837.jpg
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-8-8 00:23:56 | 显示全部楼层
截图1281198150.jpg
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-8-8 00:25:38 | 显示全部楼层
本帖最后由 数学星空 于 2010-8-8 00:31 编辑 不知有谁可以帮忙化简一下,18#式子的确太繁!(x为PA的长度) $p=1/2*(a+b+c)$ $s=sqrt(p*(p-a)*(p-c)*(p-b))$ 若要想计算r,似乎式子更繁! $r={2*s}/(2*(x+y+z)+a+b+c)$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-8-8 10:04:58 | 显示全部楼层
根据17#的图片,我们有: $cot(alpha)+cot(C/2-theta)=b/r$ $cot(beta)+cot(A/2-alpha)=c/r$ $cot(theta)+cot(B/2-beta)=a/r$ $cot(alpha)+cot(beta)+cot(theta)=cot(A/2-alpha)+cot(B/2-beta)+cot(C/2-theta)$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-22 12:06 , Processed in 0.026017 second(s), 18 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表