- 注册时间
- 2009-5-22
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 38556
- 在线时间
- 小时
|
楼主 |
发表于 2010-9-16 15:19:13
|
显示全部楼层
18楼的方法看起来很不错,可是我怎么都学不会。
结果我还是用了自己的那套土方法。
我花了很大的成本,得到了$A_19$的值:
$A_19=0.5905853419876694$
拟合过程如下:- #include<cstdio>
- #include<math.h>
-
- double a[999999]={
- 0,
- 0.5,
- 0.54119610014619698439972320536639,
- 0.55929631600132353475576392078938,
- 0.56972413396802715322804051835303,
- 0.57581007321162765360503297431458,
- 0.57970275713244352141943997833056,
- 0.58235129508008298007347469183041,
- 0.58424146648984767386035113239817,
- 0.58564155686139651141699566635464,
- 0.58671003405340635980469047312441,
- 0.58754560137670707686509637674778,
- 0.58821247060644326317197307974183,
- 0.58875395365138276709785553207334,
- 0.58920017119372364434464005947868,
- 0.58957262470961612944817110769224,
- 0.5898870137232585,
- 0.5901550299615904,
- 0.5903855332606833,
- 0.5905853419876694
- };
-
- int i,n;
- double b[999999],c[999999],d[999999],e[999999],f[999999],g[999999];
-
- double f_(int i)
- {
- return -1.4976171+0.26715566*i;
- }
-
- int main()
- {
- n=20;
- for(i=1;i<n;i++)
- {
- b[i]=exp(-log(a[i]-a[i-1])/2.75);
- }
- for(i=2;i<n;i++)
- {
- c[i]=b[i]-b[i-1];
- }
- for(i=3;i<n;i++)
- {
- d[i]=exp(-log(c[i-1]-c[i])/2.712);
- }
- for(i=4;i<n;i++)
- {
- e[i]=d[i]-d[i-1];
- }
- for(i=5;i<n;i++)
- {
- f[i]=exp(-log(e[i]-e[i-1])/3.853369);
- printf("%d %.16lf %.16lf\n",i,f[i],f_(i));
- }
- for(i=n;i<999999;i++)
- f[i]=f_(i);
- for(i=n;i<999999;i++)
- f[i]=f[i-1]+g[i];
- for(i=n;i<999999;i++)
- e[i]=e[i-1]+exp(-log(f[i])*3.853369);
- for(i=n;i<999999;i++)
- d[i]=d[i-1]+e[i];
- for(i=n;i<999999;i++)
- c[i]=c[i-1]-exp(-log(d[i])*2.712);
- for(i=n;i<999999;i++)
- b[i]=b[i-1]+c[i];
- for(i=n;i<999999;i++)
- a[i]=a[i-1]+exp(-log(b[i])*2.75);
-
- for(i=0;i<999999;i+=(i>31?i:1))
- printf("%6d: %.16lf\n",i,a[i]);
- return 0;
- }
复制代码 程序输出如下:- 5 -1.#IND000000000000 -0.1618388000000000
- 6 -1.#IND000000000000 0.1053168600000001
- 7 -1.#IND000000000000 0.3724725200000001
- 8 -1.#IND000000000000 0.6396281800000001
- 9 -1.#IND000000000000 0.9067838400000003
- 10 1.#QNAN00000000000 1.1739395000000001
- 11 1.2400299956402463 1.4410951599999999
- 12 1.7184718045516196 1.7082508200000002
- 13 1.9384902061929288 1.9754064800000004
- 14 2.2365949301518984 2.2425621400000004
- 15 2.5061186902492905 2.5097177999999998
- 16 2.7768734284468222 2.7768734600000000
- 17 3.0440290793828071 3.0440291200000003
- 18 3.3111847500498381 3.3111847800000005
- 19 3.5783404007816051 3.5783404399999998
- 0: 0.0000000000000000
- 1: 0.5000000000000000
- 2: 0.5411961001461970
- 3: 0.5592963160013236
- 4: 0.5697241339680271
- 5: 0.5758100732116277
- 6: 0.5797027571324436
- 7: 0.5823512950800830
- 8: 0.5842414664898477
- 9: 0.5856415568613965
- 10: 0.5867100340534064
- 11: 0.5875456013767071
- 12: 0.5882124706064432
- 13: 0.5887539536513827
- 14: 0.5892001711937237
- 15: 0.5895726247096161
- 16: 0.5898870137232585
- 17: 0.5901550299615904
- 18: 0.5903855332606833
- 19: 0.5905853419876694
- 20: 0.5907597763774112
- 21: 0.5909130395624155
- 22: 0.5910484896187661
- 23: 0.5911688369727856
- 24: 0.5912762897683751
- 25: 0.5913726623579062
- 26: 0.5914594572711018
- 27: 0.5915379278478790
- 28: 0.5916091265966935
- 29: 0.5916739428925802
- 30: 0.5917331326283863
- 31: 0.5917873417313245
- 32: 0.5918371249591274
- 64: 0.5924660692652847
- 128: 0.5926612272674896
- 256: 0.5927205350417009
- 512: 0.5927383640078597
- 1024: 0.5927436941980384
- 2048: 0.5927452833002713
- 4096: 0.5927457564031907
- 8192: 0.5927458971557772
- 16384: 0.5927459390163858
- 32768: 0.5927459514637898
- 65536: 0.5927459551647473
- 131072: 0.5927459562650940
- 262144: 0.5927459565922527
- 524288: 0.5927459566891469
复制代码 结论:极限约为$0.59274596$,但是无法给出误差范围。
我接下来会给出详细步骤。
希望wayne等大牛仔细看,帮我估计一下最终结果的误差有多大。 |
|