找回密码
 欢迎注册
楼主: 282842712474

[讨论] 直上云霄的方程

[复制链接]
 楼主| 发表于 2010-2-6 14:03:03 | 显示全部楼层
本帖最后由 282842712474 于 2010-2-6 14:09 编辑 10# 282842712474 x^k-k=0.PNG 添加一个图像,可以看出应该有:$k\in [0,2]$ 所以要使原方程有解,右边的数要在0与2之间; 要使左边收敛,x要在0与$\sqrt{2}$之间
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-2-6 23:36:02 | 显示全部楼层
你这么做有一个前提,就是k存在, k存在就意味着式子必须收敛
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-2-6 23:42:24 | 显示全部楼层
你这么做有一个前提,就是k存在, k存在就意味着式子必须收敛 wayne 发表于 2010-2-6 23:36
k的设置不需要函数的收敛为前提。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-2-7 11:21:56 | 显示全部楼层
k可以取更大一点点的范围
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-2-7 11:27:38 | 显示全部楼层
多大?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-2-7 11:46:08 | 显示全部楼层
a应该只能为1,(可以构造一个数列,a(n)=x^x^x....x(n个x),判断数列a的敛散性) 当x大于0小于1时,数列收敛于1,即a为1 当x大于1时,数列发散 wayne 发表于 2010-2-6 13:26
当x大于1时,数列发散? 不是吧? 当X<=根2,a(n)<=2,是收敛的啊~~
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-2-7 14:51:52 | 显示全部楼层
x最大可以取到$exp(1/e)~=1.444667861$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-2-7 16:34:16 | 显示全部楼层
当x大于1时,数列发散? 不是吧? 当X geslon 发表于 2010-2-7 11:46
x=2的时候已经无穷大了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-2-7 16:36:47 | 显示全部楼层
x最大可以取到$exp(1/e)~=1.444667861$ mathe 发表于 2010-2-7 14:51
请问mathe,这结果如何得出? 应该是求$\root{n}{n}$的最大值吧? 我尝试求导数,但是好像无法求解。于是略略地从图象判断出$\sqrt{2}$,想不到结果和$\sqrt{2}$如此接近
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-2-8 12:03:12 | 显示全部楼层
判断方程$x^y=y$中x和y的范围,两边求对数得到 $ln(x)={ln(y)}/y$ 对函数${ln(y)}/y$求导,其导数为${1-ln(y)}/{y^2}$,所以导数有唯一零点$y=e$,而$ye$时函数减,所以${ln(y)}/y$最大值为${ln(e)}/e=1/e$,于是我们得到$-infty
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-24 02:51 , Processed in 0.026813 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表