- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19886
- 在线时间
- 小时
|
楼主 |
发表于 2011-10-29 11:15:24
|
显示全部楼层
根据楼上 hujunhua 的提示:
设P点为\triangle ABC内心时,\(L=a+b+c\)最大,且设其内切圆半径为\(r\),则可以得到:
\(a=\sqrt{y^2-r^2}+\sqrt{z^2-r^2}\)
\(b=\sqrt{x^2-r^2}+\sqrt{z^2-r^2}\)
\(c=\sqrt{x^2-r^2}+\sqrt{y^2-r^2}\)
即有\(L=2(\sqrt{x^2-r^2}+\sqrt{y^2-r^2}+\sqrt{z^2-r^2})\) , \( r\)和楼上的\(k\)相等)
且\(r\) 满足:
\(r^2=(\frac{2S}{L})^2=\frac{\sqrt{(x^2-r^2)(y^2-r^2)(z^2-r^2)}}{\sqrt{x^2-r^2}+\sqrt{y^2-r^2}+\sqrt{z^2-r^2}}\) (5)
对(5)通过消元我们可以得到
\(2yxzr^3+(x^2y^2+x^2z^2+y^2z^2)r^2-x^2y^2z^2=0\)
令\(x=\frac{1}{x_1},y=\frac{1}{y_1},z=\frac{1}{z_1}\)得到
\(2x_1y_1z_1r^3+(x_1^2+y_1^2+z_1^2)r^2-1=0\) (与问题(1)似乎有些类似?)
------------------------------------------------------------------------------------------------------------
注记:
/forum.php?mod=redirect&goto=findpost&ptid=5059&pid=49763&fromuid=1455
中给出了如下结论:
(设三角形ABC内心为$I,IA=x,IB=y,IC=z$,三角形三边长为$a,b,c$)
$bc(b+c-a)=(a+b+c)x^2$
$ca(c+a-b)=(a+b+c)y^2$
$ab(a+b-c)=(a+b+c)z^2$
上面关于变量\(a,b,c\)的代数方程
\(x^2a^8+(-3x^2y^2-2x^2z^2+y^2z^2)a^6+(3x^2y^4+4x^2y^2z^2+x^2z^4-3y^4z^2-2y^2z^4)a^4+(-x^2y^6-2x^2y^4z^2-x^2y^2z^4+3y^6z^2+y^2z^6)a^2-y^8z^2+2y^6z^4-y^4z^6=0\)
\(y^2b^8+(-3x^2y^2+x^2z^2-2y^2z^2)b^6+(3x^4y^2-3x^4z^2+4x^2y^2z^2-2x^2z^4+y^2z^4)b^4+(-x^6y^2+3x^6z^2-2x^4y^2z^2-x^2y^2z^4+x^2z^6)b^2-x^8z^2+2z^4x^6-x^4z^6=0\)
\(z^2c^8+(x^2y^2-2x^2z^2-3y^2z^2)c^6+(-2x^4y^2+x^4z^2-3x^2y^4+4x^2y^2z^2+3y^4z^2)c^4+(x^6y^2-x^4y^2z^2+3x^2y^6-2x^2y^4z^2-y^6z^2)c^2-y^8x^2+2x^4y^6-x^6y^4=0\)
面积\(L=a+b+c\)
--------------------------------------
最终的求解结果:
见/forum.php?mod=redirect&goto=findpost&ptid=5059&pid=52683&fromuid=1455
若内心\(I\)到三顶点的距离为\(x,y,z\),面积为\(s\),周长\(L\),则有结论:
1. \(16x^4y^4z^4s^6+(xy+xz+yz)(xy+xz-yz)(xy-xz-yz)(xy-xz+yz)(x^2y^2+x^2z^2+y^2z^2)^2s^4-2x^2y^2z^2(x^8y^6-x^8y^4z^2-x^8y^2z^4+x^8z^6+x^6y^8-4x^6y^6z^2+4x^6y^4z^4-4x^6y^2z^6+x^6z^8-x^4y^8z^2+4x^4y^6z^4+4x^4y^4z^6-x^4y^2z^8-x^2y^8z^4-4x^2y^6z^6-x^2y^4z^8+y^8z^6+y^6z^8)s^2+x^4z^4y^4(y-z)^2(y+z)^2(x-z)^2(x+z)^2(x-y)^2(x+y)^2=0\)
2. \(y^2x^2z^2L^6+(x^4y^4-10x^4y^2z^2+x^4z^4-10x^2y^4z^2-10x^2y^2z^4+y^4z^4)L^4+(-8x^6y^4+32x^6y^2z^2-8x^6z^4-8x^4y^6-16x^4y^4z^2-16x^4y^2z^4-8x^4z^6+32x^2y^6z^2-16x^2y^4z^4+32x^2y^2z^6-8y^6z^4-8y^4z^6)L^2+16(y-z)^2(y+z)^2(x-z)^2(x+z)^2(x-y)^2(x+y)^2=0\)
若外心\(O\)到三角形\(\triangle ABC\)三边的距离为\(x,y,z\),面积为\(s\),周长\(L\),则有结论:
1. \(L^6-12(z+x+y)^2L^4+(-64x^4+64x^3y+64x^3z+64x^2y^2-128x^2yz+64x^2z^2+64xy^3-128xy^2z-128xyz^2+64xz^3-64y^4+64y^3z+64y^2z^2+64yz^3-64z^4)L^2+256(y-z)^2(x-z)^2(x-y)^2=0\)
2. \(s^6+(x^4-10x^2y^2-10x^2z^2+y^4-10y^2z^2+z^4)s^4+(-8x^6y^2-8x^6z^2+32x^4y^4-16x^4y^2z^2+32x^4z^4-8x^2y^6-16x^2y^4z^2-16x^2y^2z^4-8x^2z^6-8y^6z^2+32y^4z^4-8y^2z^6)s^2+16(y-z)^2(y+z)^2(x-z)^2(x+z)^2(x-y)^2(x+y)^2=0\)
|
|