- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19886
- 在线时间
- 小时
|
楼主 |
发表于 2015-7-14 08:37:25
|
显示全部楼层
根据楼上结论可设:
\(A(x_1, y_1, z_1), B(x_2, y_2, z_3), C(x_3, y_3, z_3), D(x_0, y_0, z_0)\)
\(I_0(x_{11}, y_{11}, z_{11}), I_1(x_{10}, y_{10}, z_{10}), I_2(x_{20}, y_{20}, z_{20}), I_3(x_{30}, y_{30}, z_{30}), P(0, 0, 0)\)
\(AB = c, AC = b, AD = a_1, BC = a, BD = b_1, CD = c_1\)
\(\triangle ABC\) 内心 \(I_0\), \(\triangle ABD\) 内心 \(I_3\), \(\triangle ACD\) 内心 \(I_2\), \(\triangle BCD\) 内心 \(I_1\)
可得到下列方程:
\(k_0x_0 = \frac{ax_1+bx_2+cx_3}{a+b+c}\)
\(k_0y_0 = \frac{ay_1+by_2+cy_3}{a+b+c}\)
\(k_0z_0 = \frac{az_1+bz_2+cz_3}{a+b+c}\)
\(k_1x_1 = \frac{ax_0+b_1x_3+c_1x_2}{a+b_1+c_1}\)
\(k_1y_1 = \frac{ay_0+b_1y_3+c_1y_2}{a+b_1+c_1}\)
\(k_1z_1 = \frac{az_0+b_1z_3+c_1z_2}{a+b_1+c_1}\)
\(k_2x_2 = \frac{a_1x_3+bx_0+c_1x_1}{a_1+b+c_1}\)
\(k_2y_2 = \frac{a_1y_3+by_0+c_1y_1}{a_1+b+c_1}\)
\(k_2z_2 = \frac{a_1z_3+bz_0+c_1z_1}{a_1+b+c_1}\)
\(k_3x_3 = \frac{a_1x_2+b_1x_1+cx_0}{a_1+b_1+c}\)
\(k_3y_3 = \frac{a_1y_2+b_1y_1+cy_0}{a_1+b_1+c}\)
\(k_3z_3 = \frac{a_1z_2+b_1z_1+cz_0}{a_1+b_1+c}\)
\(x_0^2+y_0^2+z_0^2 = u^2\)
\(x_1^2+y_1^2+z_1^2 = x^2\)
\(x_2^2+y_2^2+z_2^2 = y^2\)
\(x_3^2+y_3^2+z_3^2 = z^2\)
\(a^2 = (x_2-x_3)^2+(y_2-y_3)^2+(z_2-z_3)^2\)
\(b^2 = (x_1-x_3)^2+(y_1-y_3)^2+(z_1-z_3)^2\)
\(c^2 = (x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2\)
\(a_1^2 = (x_0-x_1)^2+(y_0-y_1)^2+(z_0-z_1)^2\)
\(b_1^2 = (x_0-x_2)^2+(y_0-y_2)^2+(z_0-z_2)^2\)
\(c_1^2 = (x_0-x_3)^2+(y_0-y_3)^2+(z_0-z_3)^2\)
若取:
\(x = 3, y = 4, z = 5, u = 6\)
解得上述方程组,得到:
\(a = 7.296240846, a_1 = 7.374787895, b = 6.436574223, b_1 = 8.359762010, c = 5.633079407, c_1 = 9.552187140\)
\( k_0 = -0.2538712725, k_1 = -0.4295419047, k_2 = -0.3606779756, k_3 = -0.3020537869\)
\(x_0 = -5.367888653, x_1 = 1.027073438, x_2 = -.2983002272, x_3 = 3.695524296\)
\(y_0 = 2.524437675, y_1 = 1.230397184, y_2 = -3.927146938, y_3 = .6903579963\)
\(z_0 = -0.9016572689, z_1 = 2.535989535, z_2 = .6989520041, z_3 = -3.296438383\) |
|