- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19891
- 在线时间
- 小时
|
楼主 |
发表于 2012-5-9 21:08:27
|
显示全部楼层
对于N=3,我们可以得到如下结果:
起点为$(m*cos(theta),n*sin(theta))$
设$cos(theta)=(1-s^2)/(1+s^2),sin(theta)=(2*s)/(1+s^2)$
(1)若已知$m,n,theta$,求边长$a$则有
$256*m^4*n^4*(s^2+1)^2*(42*m^2*n^6*s^8+27*n^8*s^8-53*m^4*s^8*n^4-108*n^8*s^6+240*m^2*n^6*s^6+408*m^6*n^2*s^6-$
$476*m^4*n^4*s^6+162*n^8*s^4+210*n^4*s^4*m^4+432*m^8*s^4-144*m^6*n^2*s^4-564*m^2*n^6*s^4-108*n^8*s^2+240*m^2*n^6*s^2+$
$408*m^6*n^2*s^2-476*m^4*n^4*s^2+42*m^2*n^6+27*n^8-53*m^4*n^4)*a^2-48*n^2*m^2*(s^2+1)^4*(m-n)*(m+n)*$
$(108*m^8*s^2+75*m^6*n^2+294*m^6*n^2*s^2+75*m^6*n^2*s^4-65*m^4*n^4+390*m^4*n^4*s^2-65*n^4*s^4*m^4-$
$111*m^2*n^6-111*m^2*n^6*s^4-78*m^2*n^6*s^2-27*n^8*s^4+54*n^8*s^2-27*n^8)*a^4+9*(s^2+1)^6*(m-n)^2*(m+n)^2*(n^2+3*m^2)^2*$
$(3*n^2+m^2)^2*a^6-12288*n^6*m^6*(4*m^2*s^2+n^2*s^4-2*n^2*s^2+n^2)^3=0$
(2)若已知$m,n,a$,求起点$s$,则有
$(2268*a^6*m^2*n^10-2592*a^4*m^2*n^12+22272*a^4*m^8*n^6+378*a^6*m^4*n^8+104448*a^2*m^10*n^6-6264*a^6*m^6*n^6+$
$73728*m^6*n^12-148992*a^2*m^8*n^8+378*a^6*m^8*n^4-23328*a^4*m^10*n^4-147456*m^8*n^10-$
$13824*a^2*m^4*n^12+486*a^6*n^12+486*a^6*m^12+2268*a^6*m^10*n^2-5184*a^4*m^12*n^2+82944*a^2*m^6*n^10+$
$31296*a^4*m^6*n^8-22464*a^4*m^4*n^10)*s^2+(1215*a^6*n^12+589824*m^8*n^10+110592*a^2*m^12*n^4-184320*m^6*n^12-$
$589824*m^10*n^8-20736*a^4*m^12*n^2+1296*a^4*m^2*n^12-6912*a^2*m^4*n^12-203520*a^2*m^8*n^8-$
$53568*a^4*m^4*n^10+5670*a^6*m^2*n^10+28608*a^4*m^8*n^6-10752*a^2*m^6*n^10-60912*a^4*m^10*n^4+$
$5670*a^6*m^10*n^2+105312*a^4*m^6*n^8-15660*a^6*m^6*n^6+172032*a^2*m^10*n^6+945*a^6*m^8*n^4+$
$1215*a^6*m^12+945*a^6*m^4*n^8)*s^4+(-70272*a^4*m^4*n^10+7560*a^6*m^10*n^2-31104*a^4*m^12*n^2-$
$136192*a^2*m^8*n^8+5184*a^4*m^2*n^12-884736*m^8*n^10+1620*a^6*m^12-$
$165888*a^2*m^6*n^10+1260*a^6*m^4*n^8+152448*a^4*m^6*n^8+26112*a^4*m^8*n^6+245760*m^6*n^12-$
$20880*a^6*m^6*n^6+135168*a^2*m^10*n^6-786432*m^12*n^6-$
$82368*a^4*m^10*n^4+7560*a^6*m^2*n^10+1620*a^6*n^12+221184*a^2*m^12*n^4+1260*a^6*m^8*n^4+27648*a^2*m^4*n^12+$
$1179648*m^10*n^8)*s^6+(1215*a^6*n^12+589824*m^8*n^10+110592*a^2*m^12*n^4-184320*m^6*n^12-589824*m^10*n^8-$
$20736*a^4*m^12*n^2+1296*a^4*m^2*n^12-6912*a^2*m^4*n^12-203520*a^2*m^8*n^8-53568*a^4*m^4*n^10+5670*a^6*m^2*n^10+$
$28608*a^4*m^8*n^6-10752*a^2*m^6*n^10-60912*a^4*m^10*n^4+5670*a^6*m^10*n^2+105312*a^4*m^6*n^8-$
$15660*a^6*m^6*n^6+172032*a^2*m^10*n^6+945*a^6*m^8*n^4+1215*a^6*m^12+945*a^6*m^4*n^8)*s^8+(2268*a^6*m^2*n^10-$
$2592*a^4*m^2*n^12+22272*a^4*m^8*n^6+378*a^6*m^4*n^8+104448*a^2*m^10*n^6-6264*a^6*m^6*n^6+73728*m^6*n^12-$
$148992*a^2*m^8*n^8+378*a^6*m^8*n^4-23328*a^4*m^10*n^4-147456*m^8*n^10-13824*a^2*m^4*n^12+486*a^6*n^12+$
$(486*a^6*m^12+2268*a^6*m^10*n^2-5184*a^4*m^12*n^2+82944*a^2*m^6*n^10+31296*a^4*m^6*n^8-22464*a^4*m^4*n^10)*s^10+$
$a^2*m^4+6*m^2*n^2*a^2+9*a^2*n^4-48*n^4*m^2)*(9*a^2*m^4-6*m^2*n^2*a^2-3*a^2*n^4+16*n^4*m^2)^2*s^12+(a^2*m^4+$
$6*m^2*n^2*a^2+9*a^2*n^4-48*n^4*m^2)*(9*a^2*m^4-6*m^2*n^2*a^2-3*a^2*n^4+16*n^4*m^2)^2=0$ |
|