找回密码
 欢迎注册
楼主: wayne

[讨论] A^4 + B^4 + C^4 = D^4的正整数解

[复制链接]
发表于 前天 19:01 | 显示全部楼层
根据楼上 wanye 提供的相关资料及计算共有116组解(按照hyperellratpoints(f(u),v),1000000)计算结果)

[序号,\([u,v,D,x,y,z]\)]

[1, [-9/20, 1000/47, 495260031/441800, 414560/422481, 95800/422481, 217519/422481]],
[2, [-9/20, 1000/47, -495260031/441800, -632671960/1679142729, -1670617271/1679142729, 50237800/1679142729]],
[3, [-9/20, 5728/215, 16723774473/9245000, 2767624/2813001, 673865/2813001, 1390400/2813001]],
[4, [-9/20, 5728/215, -16723774473/9245000, -5821981400/15434547801, -15355831360/15434547801, 140976551/15434547801]],
[5, [-9/20, -1041/320, 2126704839/40960000, 1670617271/1679142729, 632671960/1679142729, -50237800/1679142729]],
[6, [-9/20, -1041/320, -2126704839/40960000, -95800/422481, -414560/422481, -217519/422481]],
[7, [-9/20, -1425/412, 3894577617/67897600, 15355831360/15434547801, 5821981400/15434547801, -140976551/15434547801]],
[8, [-9/20, -1425/412, -3894577617/67897600, -673865/2813001, -2767624/2813001, -1390400/2813001]],
[9, [-9/20, -4209/3500, 6507898503/700000000, 414560/422481, 95800/422481, -217519/422481]],
[10, [-9/20, -4209/3500, -6507898503/700000000, 7592431981391/29999857938609, -22495595284040/29999857938609, -27239791692640/29999857938609]],
[11, [-9/20, 30080/6007, 195619772649/7216809800, 22495595284040/29999857938609, -7592431981391/29999857938609, 27239791692640/29999857938609]],
[12, [-9/20, 30080/6007, -195619772649/7216809800, -95800/422481, -414560/422481, 217519/422481]],
[13, [-9/20, 34225/6692, 75863359911/2559020800, 440804942580160/573646321871961, -130064300991400/573646321871961, 514818101299289/573646321871961]],
[14, [-9/20, 34225/6692, -75863359911/2559020800, -673865/2813001, -2767624/2813001, 1390400/2813001]],
[15, [-9/20, -41952/33865, 2280363347913/229367645000, 2767624/2813001, 673865/2813001, -1390400/2813001]],
[16, [-9/20, -41952/33865, -2280363347913/229367645000, 130064300991400/573646321871961, -440804942580160/573646321871961, -514818101299289/573646321871961]],

[17, [-29/12, 1865/132, 4566509815/2509056, 894416022327/2051764828361, -125777308440/2051764828361, 2032977944240/2051764828361]],
[18, [-29/12, 1865/132, -4566509815/2509056, -8332208/8707481, -5507880/8707481, -1705575/8707481]],
[19, [-29/12, 6280/1359, 15222896105/132975432, -7908038161032/45556888578449, -27546142170735/45556888578449, 43940127884360/45556888578449]],
[20, [-29/12, 6280/1359, -15222896105/132975432, -8332208/8707481, -5507880/8707481, 1705575/8707481]],
[21, [-29/12, -30768/57253, 1190554344625/33715604664, 5507880/8707481, 8332208/8707481, 1705575/8707481]],
[22, [-29/12, -30768/57253, -1190554344625/33715604664, 125777308440/2051764828361, -894416022327/2051764828361, -2032977944240/2051764828361]],
[23, [-29/12, -3333/107368, 27781785391625/1660015789056, 5507880/8707481, 8332208/8707481, -1705575/8707481]],
[24, [-29/12, -3333/107368, -27781785391625/1660015789056, 27546142170735/45556888578449, 7908038161032/45556888578449, -43940127884360/45556888578449]],

[25, [-93/80, -400/37, 2960618799/4380800, 11289040/12197457, 5870000/12197457, 8282543/12197457]],
[26, [-93/80, -400/37, -2960618799/4380800, -1237796960/1787882337, -1662997663/1787882337, -686398000/1787882337]],
[27, [-93/80, -2433/920, 372167198439/5416960000, 1662997663/1787882337, 1237796960/1787882337, 686398000/1787882337]],
[28, [-93/80, -2433/920, -372167198439/5416960000, -5870000/12197457, -11289040/12197457, -8282543/12197457]],
[29, [-93/80, -84237/359800, 66222454729143/118359808000000, 11289040/12197457, 5870000/12197457, -8282543/12197457]],
[30, [-93/80, -84237/359800, -66222454729143/118359808000000, 15876595946759369395903/17503689286309573964097, 7188470920864810763360/17503689286309573964097, -12896301483090810351440/17503689286309573964097]],

[31, [-400/37, -93/80, 2960618799/4380800, 686398000/1787882337, 1662997663/1787882337, 1237796960/1787882337]],
[32, [-400/37, -93/80, -2960618799/4380800, -8282543/12197457, -5870000/12197457, -11289040/12197457]],
[33, [-400/37, -2433/920, 985189443879/579360800, 5870000/12197457, 8282543/12197457, 11289040/12197457]],
[34, [-400/37, -2433/920, -985189443879/579360800, -1662997663/1787882337, -686398000/1787882337, -1237796960/1787882337]],

[35, [-136/133, 201/4, 1416600375/141512, 14173720/16003017, 4479031/16003017, 12552200/16003017]],
[36, [-136/133, 201/4, -1416600375/141512, -108644015/156646737, -146627384/156646737, -27450160/156646737]],
[37, [-136/133, -1005/568, 102051891015/2853447968, 146627384/156646737, 108644015/156646737, 27450160/156646737]],
[38, [-136/133, -1005/568, -102051891015/2853447968, -4479031/16003017, -14173720/16003017, -12552200/16003017]],

[39, [201/4, -136/133, 1416600375/141512, 27450160/156646737, 146627384/156646737, 108644015/156646737]],
[40, [201/4, -136/133, -1416600375/141512, -12552200/16003017, -4479031/16003017, -14173720/16003017]],
[41, [201/4, -1005/568, 87999215295/5161984, 4479031/16003017, 12552200/16003017, 14173720/16003017]],
[42, [201/4, -1005/568, -87999215295/5161984, -146627384/156646737, -27450160/156646737, -108644015/156646737]],

[43, [-5/8, -1617/200, 708019737/2560000, 630662624/638523249, 275156240/638523249, 219076465/638523249]],
[44, [-5/8, -1617/200, -708019737/2560000, -260052385/589845921, -582665296/589845921, -186668000/589845921]],
[45, [-5/8, -477/692, 64335705/30647296, 18796760/20615673, 2682440/20615673, -15365639/20615673]],
[46, [-5/8, -477/692, -64335705/30647296, 2448718655/3393603777, -664793200/3393603777, -3134081336/3393603777]],
[47, [-5/8, 20824/2003, 32269755735/128384288, 18796760/20615673, 2682440/20615673, 15365639/20615673]],
[48, [-5/8, 20824/2003, -32269755735/128384288, -2480452675600/5062297699257, -4987588419655/5062297699257, 502038853976/5062297699257]],
[49, [-5/8, -34272/4885, 164968598721/763623200, 582665296/589845921, 260052385/589845921, 186668000/589845921]],
[50, [-5/8, -34272/4885, -164968598721/763623200, -275156240/638523249, -630662624/638523249, -219076465/638523249]],
[51, [-5/8, 36696/8687, 2141459895/344978144, 664793200/3393603777, -2448718655/3393603777, 3134081336/3393603777]],
[52, [-5/8, 36696/8687, -2141459895/344978144, -2682440/20615673, -18796760/20615673, 15365639/20615673]],
[53, [-5/8, 398113/66200, 16290521488377/280476160000, 47886740272114976/62940516903410601, -8813425670440240/62940516903410601, 56827813308111785/62940516903410601]],
[54, [-5/8, 398113/66200, -16290521488377/280476160000, -260052385/589845921, -582665296/589845921, 186668000/589845921]],
[55, [-5/8, -124529/68084, 7518853086255/296667587584, 4987588419655/5062297699257, 2480452675600/5062297699257, -502038853976/5062297699257]],
[56, [-5/8, -124529/68084, -7518853086255/296667587584, -2682440/20615673, -18796760/20615673, -15365639/20615673]],
[57, [-5/8, -176752/157345, 9325236881511/792238368800, 630662624/638523249, 275156240/638523249, -219076465/638523249]],
[58, [-5/8, -176752/157345, -9325236881511/792238368800, 3579087147375440/20249506709579721, -14890026433468471/20249506709579721, -18565945114216720/20249506709579721]],

[59, [233/60, -216285/23504, 675018780820577/1988776857600, -7813353720/12558554489, 4707813440/12558554489, 11988496761/12558554489]],
[60, [233/60, -216285/23504, -675018780820577/1988776857600, -335981923744570504065/375075545025537358721, 188195571677171463096/375075545025537358721, 275897431444390465240/375075545025537358721]],
[61, [233/60, 7584/54605, 42947654622593/5367070845000, -343651286746207896/481334894209428521, 438980913824794665/481334894209428521, -225712385669145920/481334894209428521]],
[62, [233/60, 7584/54605, -42947654622593/5367070845000, -7813353720/12558554489, 4707813440/12558554489, -11988496761/12558554489]],

[63, [-56/165, -383021/380940, 997084931509393/1975381798005000, 1047978087905/1367141947873, -408600530760/1367141947873, -1226022682752/1367141947873]],
[64, [-56/165, -383021/380940, -997084931509393/1975381798005000, 163180699054891578792/228746036963039501833, -84616109521023161865/228746036963039501833, -210878774189729581880/228746036963039501833]],

[65, [-125/92, -936/5281, 514986989385/118026082952, 23449050222680/25866132798297, 18776929334105/25866132798297, -12035933588696/25866132798297]],
[66, [-125/92, -936/5281, -514986989385/118026082952, 52289667920/64244765937, 17111129720/64244765937, -55479193841/64244765937]],

[67, [-361/540, 1861/240, 2085707016991/16796160000, 122055375/145087793, 1841160/145087793, 121952168/145087793]],
[68, [-361/540, 1861/240, -2085707016991/16796160000, -535914713672/1059621884297, -1041572957760/1059621884297, 187577183625/1059621884297]],
[69, [-361/540, -7800/5509, 80577403041031/4424896009800, 1041572957760/1059621884297, 535914713672/1059621884297, -187577183625/1059621884297]],
[70, [-361/540, -7800/5509, -80577403041031/4424896009800, -1841160/145087793, -122055375/145087793, -121952168/145087793]],

[71, [-817/660, -1581/1520, 23439166132879/1006410240000, 9585769407872803575/10816708329115215113, 8510180374729994520/10816708329115215113, 985735303963754488/10816708329115215113]],
[72, [-817/660, -1581/1520, -23439166132879/1006410240000, -2164632/44310257, -31669120/44310257, -41084175/44310257]],
[73, [-817/660, 21792/5035, 148223121024127/5521496805000, -2164632/44310257, -31669120/44310257, 41084175/44310257]],
[74, [-817/660, 21792/5035, -148223121024127/5521496805000, -1199828498161126807800/1671674986261410994097, -1534990269771364822095/1671674986261410994097, 38585919318751039616/98333822721259470241]],

[75, [-865/592, -14177/20156, 2838307044130425/142381024251904, 1553556440/1871713857, 1593513080/1871713857, 92622401/1871713857]],
[76, [-865/592, -14177/20156, -2838307044130425/142381024251904, 208032601069058735/1592672455342770513, -851144034922098880/1592672455342770513, -1559028675188874616/1592672455342770513]],
[77, [-865/592, -230472/438737, 527721585216584535/33730434870574208, 1553556440/1871713857, 1593513080/1871713857, -92622401/1871713857]],
[78, [-865/592, -230472/438737, -527721585216584535/33730434870574208, 179164925544119666072000/587020625514136613276553, -222787467202130880567415/587020625514136613276553, -582653975191641098286104/587020625514136613276553]],

[79, [553/80, -33400/19537, 260117908400151/1221421980800, 24743080/5179020201, 3971389576/5179020201, 4657804375/5179020201]],
[80, [553/80, -33400/19537, -260117908400151/1221421980800, -5352683902805120/5380742305932201, 1554532675059625/5380742305932201, -1841841620201576/5380742305932201]],
[81, [553/80, -294473/635180, 207130360353696711/2582103247360000, -1554532675059625/5380742305932201, 5352683902805120/5380742305932201, 1841841620201576/5380742305932201]],
[82, [553/80, -294473/635180, -207130360353696711/2582103247360000, -3971389576/5179020201, -24743080/5179020201, -4657804375/5179020201]],

[83, [-12065/12396, -1581/1520, 6215830249009663/355017949286400, 812937165464036006213895/864745895259187110399737, 591519768111748983750888/864745895259187110399737, -57810716855047169409080/864745895259187110399737]],
[84, [-12065/12396, -1581/1520, -6215830249009663/355017949286400, 2164632/44310257, -31669120/44310257, -41084175/44310257]],
[85, [-12065/12396, 21792/5035, 33451262757025519/1947744960049800, 2164632/44310257, -31669120/44310257, 41084175/44310257]],
[86, [-12065/12396, 21792/5035, -33451262757025519/1947744960049800, -66491673395168374249746120/123188180833923372056627153, -118194421251475239056505903/123188180833923372056627153, 62831773759131557571594880/123188180833923372056627153]],

[87, [1744/495, 135/1208, 180347147759/178778080800, -435210480720/521084370137, 372623278887/521084370137, -369168502640/521084370137]],
[88, [1744/495, 135/1208, -180347147759/178778080800, -5819035124295/7082388012473, 4408757988560/7082388012473, -5611660306848/7082388012473]],
[89, [1744/495, -977657/480240, 162765645365418367/28255113936720000, -4408757988560/7082388012473, 5819035124295/7082388012473, 5611660306848/7082388012473]],
[90, [1744/495, -977657/480240, -162765645365418367/28255113936720000, -372623278887/521084370137, 435210480720/521084370137, 369168502640/521084370137]],

[91, [-3168/1553, -857/3696, 41906266886375/2353308160896, 19031674138785/27497822498977, 25762744660064/27497822498977, -2054845288320/27497822498977]],
[92, [-3168/1553, -857/3696, -41906266886375/2353308160896, 2927198165920/6382441853233, -613935345969/6382441853233, -6310500741600/6382441853233]],
[93, [-3168/1553, 980785/175296, 5796392699440292705/37055862675228672, 613935345969/6382441853233, -2927198165920/6382441853233, 6310500741600/6382441853233]],
[94, [-3168/1553, 980785/175296, -5796392699440292705/37055862675228672, -25762744660064/27497822498977, -19031674138785/27497822498977, 2054845288320/27497822498977]],

[95, [-1376/705, 14337/340, 22737959090039/1689885000, 148739531603136/230791363907489, 32467583677535/230791363907489, 220093974949320/230791363907489]],
[96, [-1376/705, 14337/340, -22737959090039/1689885000, -36295982895/39871595729, -29676864960/39871595729, -11262039896/39871595729]],
[97, [-1376/705, -81065/89412, 73070745575924711/1986734608705800, 29676864960/39871595729, 36295982895/39871595729, 11262039896/39871595729]],
[98, [-1376/705, -81065/89412, -73070745575924711/1986734608705800, -32467583677535/230791363907489, -148739531603136/230791363907489, -220093974949320/230791363907489]],

[99, [-1152/2345, 19005/3688, 1161796506978039/37397065344800, 443873167360/597385645737, -142485966505/597385645737, 544848079888/597385645737]],
[100, [-1152/2345, 19005/3688, -1161796506978039/37397065344800, -468405247415/1682315502153, -1657554153472/1682315502153, 801719896720/1682315502153]],
[101, [-1152/2345, -15461/13160, 4644845269335303/476175972020000, 1657554153472/1682315502153, 468405247415/1682315502153, -801719896720/1682315502153]],
[102, [-1152/2345, -15461/13160, -4644845269335303/476175972020000, 142485966505/597385645737, -443873167360/597385645737, -544848079888/597385645737]],

[103, [2265/184, -68256/135125, 106975611923719719/309084384500000, -78558599440/820234293081, 814295112544/820234293081, 337210257575/820234293081]],
[104, [2265/184, -68256/135125, -106975611923719719/309084384500000, -7745659501403353894384/12214291847502204701241, -2120589250533219579335/12214291847502204701241, -11684173258429439467360/12214291847502204701241]],

[105, [-1245/5012, 248521/62784, 208445266940805505/99019353702334464, 39110088360/76973733409, -49796687200/76973733409, 71826977313/76973733409]],
[106, [-1245/5012, 248521/62784, -208445266940805505/99019353702334464, 12209879806944320496330055/34497456764264994703368889, -26621272474250391413865480/34497456764264994703368889, 30730370351168229154149048/34497456764264994703368889]],
[107, [-1245/5012, -267904/221337, 2252317127132864545/615318775951504968, 435117527990435060232042280/504068891841730072306483681, -106958136069417067994530335/504068891841730072306483681, -411177854471028470696556192/504068891841730072306483681]],
[108, [-1245/5012, -267904/221337, -2252317127132864545/615318775951504968, 39110088360/76973733409, -49796687200/76973733409, -71826977313/76973733409]],

[109, [1873/200, -51416/9425, 4964755565640087/1776612500000, 487814048600/26969608212297, 8528631804200/26969608212297, 26901926181047/26969608212297]],
[110, [1873/200, -51416/9425, -4964755565640087/1776612500000, -103028409596553328/103117303193818953, 24975412054750025/103117303193818953, -4092004076331400/103117303193818953]],

[111, [-97/400, 78065/484, 2352959771684697/37480960000, 87375622888246360/87486470529871881, 16306696482461560/87486470529871881, 21794572772239369/87486470529871881]],
[112, [-97/400, 78065/484, -2352959771684697/37480960000, -1313903832425/6014017311081, -6010589044544/6014017311081, -66822832760/6014017311081]],

[113, [-1425/412, -9/20, 3894577617/67897600, 1390400/2813001, 2767624/2813001, 673865/2813001]],
[114, [-1425/412, -9/20, -3894577617/67897600, 140976551/15434547801, -5821981400/15434547801, -15355831360/15434547801]],
[115, [-1425/412, 5728/215, 47763328987689/3923208200, 5821981400/15434547801, -140976551/15434547801, 15355831360/15434547801]],
[116, [-1425/412, 5728/215, -47763328987689/3923208200, -2767624/2813001, -1390400/2813001, -673865/2813001]]

以上的值只依赖于下面24个u值得到:

[-9/20, -29/12, -93/80, -400/37, -136/133, 201/4, -5/8, 233/60, -56/165, -125/92, -361/540, -817/660, -865/592, 553/80, -12065/12396, 1744/495, -3168/1553, -1376/705, -1152/2345, 2265/184, -1245/5012, 1873/200, -97/400, 553/80]

要想得到较小的有理解(20位以内),需要找到新的u值,观察上面已知的u值(都不是太大,且绝大数分母含因子4;负数较多;分子分母的质因子都是2(指数不超过7)、3(指数不超过5)、5,7,13,17,19,23,29,31,37,41...(指数不超过1);分子分母不同质因子总数在4~7;)

按以上的规则应该可以找到新的u值?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 前天 20:17 | 显示全部楼层
我已经统计过了,总共有$279$个=93(旧的)+186(新的)解,$428$个$u$值,构成240个$(u,v,w)$组合,(暂时不考虑单只椭圆曲线通过$n*P$产生的解,只是通过解超椭圆曲线,根据u,v互相关联产生的衍生解),放在了服务器上,https://nestwhile.com/res/a4b4c4d4/u.50.3.txt
https://math.stackexchange.com/a/4857107/303309 完全一致, 而且信息比他更全,更丰富。该链接提到排行榜里的前19个解是GDRZ (Robert Gerbicz, Leonid Durman, Yuri Radaev, and Alexey Zubkov)  通过暴力搜索$d<2*10^9$得到的。
完整的$(u,v,w)$对应关系可以查看文件https://nestwhile.com/res/a4b4c4d4/abcd-new.txt,
查看数据增长速度可以大胆的合理推测, 在排行第44-46之间极有可能有一个新的解。这个解源自于一个全新的$(u,v,w)$,从未出现过,而且这三个分数的分子分母都非常大,跟第9,第10个解类似。
下面是方便阅览,处理过的前50个解的前3个最小的u值。
  1. {422481, 414560, 217519, 95800} -> {-9/20, 1000/47, -1041/320}
  2. {2813001, 2767624, 1390400, 673865} -> {-9/20, -1425/412, 5728/215}
  3. {8707481, 8332208, 5507880, 1705575} -> {-29/12, 1865/132, 6280/1359}
  4. {12197457, 11289040, 8282543, 5870000} -> {-93/80, -400/37, -2433/920}
  5. {16003017, 14173720, 12552200, 4479031} -> {-136/133, 201/4, -1005/568}
  6. {16430513, 16281009, 7028600, 3642840} -> {12185/432, 22529/2988, 79416/247889}
  7. {20615673, 18796760, 15365639, 2682440} -> {-5/8, -477/692, 20824/2003}
  8. {44310257, 41084175, 31669120, 2164632} -> {-817/660, -1581/1520, -12065/12396}
  9. {68711097, 65932985, 42878560, 10409096} -> {-21021/9788, 10498601/138604, -13104000/15069437}
  10. {117112081, 106161120, 87865617, 34918520} -> {-93514757/75615072, -431691625/11587212, -936262392/509548501}
  11. {145087793, 122055375, 121952168, 1841160} -> {-361/540, 1861/240, -7800/5509}
  12. {156646737, 146627384, 108644015, 27450160} -> {-136/133, 201/4, -1005/568}
  13. {589845921, 582665296, 260052385, 186668000} -> {-5/8, -1617/200, -34272/4885}
  14. {638523249, 630662624, 275156240, 219076465} -> {-5/8, -1617/200, -34272/4885}
  15. {873822121, 769321280, 606710871, 558424440} -> {-12285/4112, -214309/129780, -403496/89145}
  16. {1259768473, 1166705840, 859396455, 588903336} -> {-41/36, 9360/2371, -4061/16308}
  17. {1679142729, 1670617271, 632671960, 50237800} -> {-9/20, 1000/47, -1041/320}
  18. {1787882337, 1662997663, 1237796960, 686398000} -> {-93/80, -400/37, -2433/920}
  19. {1871713857, 1593513080, 1553556440, 92622401} -> {-865/592, -14177/20156, -230472/438737}
  20. {3393603777, 3134081336, 2448718655, 664793200} -> {-5/8, -477/692, 36696/8687}
  21. {5179020201, 4657804375, 3971389576, 24743080} -> {553/80, -33400/19537, -294473/635180}
  22. {12558554489, 11988496761, 7813353720, 4707813440} -> {233/60, 7584/54605, -216285/23504}
  23. {15434547801, 15355831360, 5821981400, 140976551} -> {-9/20, -1425/412, 5728/215}
  24. {39871595729, 36295982895, 29676864960, 11262039896} -> {-1376/705, 14337/340, -81065/89412}
  25. {46055390617, 41714673255, 34169217200, 18125123544} -> {-41/36, 9360/2371, -4061/16308}
  26. {64244765937, 55479193841, 52289667920, 17111129720} -> {-125/92, -936/5281, 1717941/427352}
  27. {76973733409, 71826977313, 49796687200, 39110088360} -> {-1245/5012, 248521/62784, -267904/221337}
  28. {521084370137, 435210480720, 372623278887, 369168502640} -> {135/1208, 1744/495, -977657/480240}
  29. {597385645737, 544848079888, 443873167360, 142485966505} -> {-1152/2345, -15461/13160, 19005/3688}
  30. {820234293081, 814295112544, 337210257575, 78558599440} -> {2265/184, -68256/135125, 975499/3009200}
  31. {1059621884297, 1041572957760, 535914713672, 187577183625} -> {-361/540, 1861/240, -7800/5509}
  32. {1367141947873, 1226022682752, 1047978087905, 408600530760} -> {-56/165, -383021/380940, 2644685/570612}
  33. {1682315502153, 1657554153472, 801719896720, 468405247415} -> {-1152/2345, -15461/13160, 19005/3688}
  34. {2051764828361, 2032977944240, 894416022327, 125777308440} -> {-29/12, 1865/132, -30768/57253}
  35. {5062297699257, 4987588419655, 2480452675600, 502038853976} -> {-5/8, 20824/2003, -124529/68084}
  36. {6014017311081, 6010589044544, 1313903832425, 66822832760} -> {-97/400, 78065/484, -61583704/7959505}
  37. {6382441853233, 6310500741600, 2927198165920, 613935345969} -> {-3168/1553, -857/3696, 980785/175296}
  38. {7082388012473, 5819035124295, 5611660306848, 4408757988560} -> {135/1208, 1744/495, -977657/480240}
  39. {25866132798297, 23449050222680, 18776929334105, 12035933588696} -> {-125/92, -936/5281, 1717941/427352}
  40. {26969608212297, 26901926181047, 8528631804200, 487814048600} -> {1873/200, -51416/9425, -3599825/50036084}
  41. {27497822498977, 25762744660064, 19031674138785, 2054845288320} -> {-3168/1553, -857/3696, 980785/175296}
  42. {29999857938609, 27239791692640, 22495595284040, 7592431981391} -> {-9/20, -4209/3500, 30080/6007}
  43. {45556888578449, 43940127884360, 27546142170735, 7908038161032} -> {-29/12, 6280/1359, -3333/107368}
  44. {58844817090201, 56329979520665, 34511786481280, 26636493544576} -> {-1041/320, -2830405/222976, -2561104512/2803746965}
  45. {230791363907489, 220093974949320, 148739531603136, 32467583677535} -> {-1376/705, 14337/340, -81065/89412}
  46. {573646321871961, 514818101299289, 440804942580160, 130064300991400} -> {-9/20, 34225/6692, -41952/33865}
  47. {5380742305932201, 5352683902805120, 1841841620201576, 1554532675059625} -> {553/80, -33400/19537, -294473/635180}
  48. {20249506709579721, 18565945114216720, 14890026433468471, 3579087147375440} -> {-5/8, -176752/157345, 4718261/816880}
  49. {62940516903410601, 56827813308111785, 47886740272114976, 8813425670440240} -> {-5/8, 398113/66200, -3589408/3049765}
  50. {87486470529871881, 87375622888246360, 21794572772239369, 16306696482461560} -> {-97/400, 78065/484, -61583704/7959505}
复制代码

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 昨天 10:50 | 显示全部楼层
PARI/Gp的hyperellratpoints还是太慢了,计算一个指定的u在高度为10^8的其他v值需要跑44个小时. 我现在换成了ratpoints.用C语言调用,速度要快好几倍. https://github.com/MichaelStollBayreuth/ratpoints
不过还好,我花了两天不间断的穷举所有1000以下高度为10^6的所有u值,没有发现新的u值.
倒是漏掉了$-5/44$, 因为搜索到高度需要提升到10^8,这个需要单独分析.

------------------------------------------------
根据文件https://nestwhile.com/res/a4b4c4d4/reverse.txt 的统计结果.分析u的情况. 分子分母都小于1000的所有u只有19个(多出3个).其中$-\frac{9}{20}$最多,有8组$(u,v,w)$,每个$(u,v,w)$对应2个$(a,b,c,d)$解.
$-\frac{5}{8}\to 7,-\frac{9}{20}\to 8,-\frac{29}{12}\to 4,-\frac{41}{36}\to 3,-\frac{5}{44}\to 4,-\frac{93}{80}\to 3,-\frac{125}{92}\to 5,-\frac{136}{133}\to 4,-\frac{56}{165}\to 3,\frac{201}{4}\to 3,\frac{233}{60}\to 3,-\frac{400}{37}\to 2,-\frac{97}{400}\to 2,-\frac{361}{540}\to 2,\frac{553}{80}\to 4,-\frac{477}{692}\to 2,-\frac{817}{660}\to 2,-\frac{865}{592}\to 4,\frac{1000}{47}\to 3,-\frac{1005}{568}\to 2$
  1. {-(5/8),-(9/20),-(29/12),-(41/36),-(5/44),-(93/80),-(125/92),-(136/133),-(56/165),201/4,233/60,-(400/37),-(97/400),-(361/540),553/80,-(477/692),-(817/660),-(865/592),1000/47}
复制代码

  1. {-(5/8)->{{-(5/8),-(1617/200),-(34272/4885)},{-(5/8),-(477/692),36696/8687},{-(5/8),20824/2003,-(124529/68084)},{-(5/8),398113/66200,-(3589408/3049765)},{-(5/8),-(176752/157345),4718261/816880},{-(5/8),4037701/712772,-(34666792/31592857)},{-(5/8),541388136/3857219,-(4250103489/1384328092)}},-(9/20)->{{-(9/20),1000/47,-(1041/320)},{-(9/20),-(1425/412),5728/215},{-(9/20),-(4209/3500),30080/6007},{-(9/20),34225/6692,-(41952/33865)},{-(9/20),61008600/1159319,-(68433257/17513240)},{-(9/20),-(107014216/29258425),210232185/6094384},{-(9/20),14486729065/814087256,-(29393447736/9584944225)},{-(9/20),1469114228933808/12826625923015,-(1691398818144025/403973326391908)}},-(29/12)->{{-(29/12),1865/132,-(30768/57253)},{-(29/12),6280/1359,-(3333/107368)},{-(29/12),-(189274425/1076672236),118669843216/20351175339},{-(29/12),-(9943745400/11841832129),-(746942047637/2082322752)}},-(41/36)->{{-(41/36),9360/2371,-(4061/16308)},{-(41/36),-(2441565/942392),-(22869016/1897173)},{-(41/36),-(16622002576128560/24373901295740877),197214290538785133/31571140813884476}},-(5/44)->{{-(5/44),57878913/12642040,-(2741924904/1401894085)},{-(5/44),4669000304/944254963,-(117620301817/53219719132)},{-(5/44),-(43000836761/25579904000),8541935778968/2036027368195},{-(5/44),-(343268956016/144380152505),28531188247669/5494554320180}},-(93/80)->{{-(93/80),-(400/37),-(2433/920)},{-(93/80),-(84237/359800),11502160/2925527},{-(93/80),-(616293201485641717/29739528734286760),-(6685594928073633840/3091584890628164593)}},-(125/92)->{{-(125/92),-(936/5281),1717941/427352},{-(125/92),10490417/84724,-(1877877296/1326891341)},{-(125/92),-(4887278104/1856675737),-(1023342388301/134640713696)},{-(125/92),8204718073/2152051820,-(179700100672/1421567294005)},{-(125/92),-(10001951064/4247679185),-(2232712366053/234335456480)}},-(136/133)->{{-(136/133),201/4,-(1005/568)},{-(136/133),-(511289/1551044),27660845/6860848},{-(136/133),23685689/3885556,-(63528125/85096232)},{-(136/133),-(4599374556397238049/210488523233668004),-(27853328093630687925/11390499849797373712)}},-(56/165)->{{-(56/165),-(383021/380940),210241305/52130512},{-(56/165),2644685/570612,-(216116793/168202160)},{-(56/165),451525338984813/101494987368460,-(35324615808268585/29389382407370664)}},201/4->{{-(136/133),201/4,-(1005/568)},{201/4,4372152/935219,7919435/17426416},{201/4,6210699/13897628,216566800/45486779}},233/60->{{233/60,7584/54605,-(6625405/2392764)},{233/60,-(216285/23504),20642296/53214885},{233/60,-(7428842654432/6035445436845),-(236274775097565/1227586895452028)}},-(400/37)->{{-(93/80),-(400/37),-(2433/920)},{-(400/37),1867333/457280,8685847/22963880}},-(97/400)->{{-(97/400),78065/484,-(61583704/7959505)},{-(97/400),78855705/1344892,-(60671827752/8724916985)}},-(361/540)->{{-(361/540),1861/240,-(7800/5509)},{-(361/540),-(6393885/10250072),215657416/51845475}},553/80->{{553/80,-(33400/19537),-(294473/635180)},{553/80,878775/1856708,94116264/11111135},{553/80,-(3344476868232/81390104425),13857166965855/54779944848244},{553/80,-(5530784621247221929/4621511133840351100),-(161622483046997673880/223409745703774700161)}},-(477/692)->{{-(5/8),-(477/692),36696/8687},{-(477/692),2136525/340912,-(1688076136/1490944633)}},-(817/660)->{{-(817/660),-(1581/1520),8583400/714723},{-(817/660),21792/5035,-(3622925/12225132)}},-(865/592)->{{-(865/592),-(14177/20156),5846168/682447},{-(865/592),-(230472/438737),60906561/9414892},{-(865/592),1153296374048673/229783858565692,-(24932273792436648/74686203064345969)},{-(865/592),41460743268273973816/7028502539237212727,-(596668135995361389497/1299567350985701388812)}},1000/47->{{-(9/20),1000/47,-(1041/320)},{1000/47,330353/48940,3521543/9580960},{1000/47,-(81640949939264532129/32571198102287520620),-(1510140049031003568921/2491254192967045854920)}},-(1005/568)->{{-(136/133),201/4,-(1005/568)},{-(1005/568),-(7516797/66665212),163242376/37855247}}}
复制代码

点评

跟PARI/Gp没关系了  发表于 昨天 11:56
你将u值提升到10^8才找到-5/44,是不是说将u提升到10^10,有可能找到新的u值? u值数量是否有限,这是一个无底洞啊~~  发表于 昨天 11:42
ratpoints 不是PARI内置命令吧,是需要加载的新的命令吧?  发表于 昨天 11:37

评分

参与人数 2威望 +20 金币 +28 贡献 +20 经验 +20 鲜花 +20 收起 理由
northwolves + 8 + 8 + 8 + 8 + 8 赞一个!
数学星空 + 12 + 20 + 12 + 12 + 12 赞一个!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 昨天 19:54 | 显示全部楼层
认真研读了Noam D. Elkies的文章,https://doi.org/10.2307/2008781,或者这里下载: https://nestwhile.com/res/a4b4c4 ... +%20C4%20=%20D4.pdf
他是第一个给出$a^4+b^4+c^4=d^4$的解的人。
然后代码验证了一下,发现u 确实满足一个同余关系,虽然结构简单,但是定义复杂。记$u=\frac{2m}{n},GCD(m,n)=1$,且n是奇数, 如果u的分母是偶数,就做变换$u \to \frac{2}{u}$,再取m,n. 因为这种变换只是改变了最终结果的正负号。
定义一个关于整数k的函数$R(k) =\frac{k}{p^2}$,$p$是使得$p^2$整除$k$的最大因子,比如$R(23)=23,R(-24)=-6,R(25)=1$.
有这个定义之后,对于$\frac{u}{2}$的$(m,n)$,存在一个必要的条件, 就是$R(2 m^2+ n^2),R(2 m^2 - 2 m n + n^2),R(2 m^2 - 4 m n + n^2),R(2 m^2 +2 m n + n^2)$都是模8余1,的素数乘积。



  1. RK[x_]:=Module[{p=x},p/Product[pp[[1]]^(2 Floor[pp[[2]]/2]),{pp,FactorInteger[p]}]];
  2. ValidateU[x_]:=Module[{nm=x,m,n},If[(nm-2)^2>2,{m,n}=If[Mod[Denominator[x],2]==0,{Denominator[nm],Numerator[nm]},{Numerator[nm/2],Denominator[nm/2]}];
  3. Union[Flatten[Map[Mod[FactorInteger[#][[All,1]],8]&, {RK[2 m^2+n^2],RK[2 m^2-2 m n+n^2],RK[2 m^2+2 m n+n^2],RK[2 m^2-4 m n+n^2]}]]]=={1},False]];
  4. goodu={};Block[{mm=100,n,m},Monitor[Do[If[GCD[m,n]==1,If[ValidateU[n/m],AppendTo[goodu,n/m]];
  5. If[ValidateU[-n/m],AppendTo[goodu,-n/m]];
  6. If[ValidateU[m/n],AppendTo[goodu,m/n]];
  7. If[ValidateU[-m/n],AppendTo[goodu,-m/n]]],{n,mm},{m,n+1,mm}],{n,m}]];goodu
复制代码


计算发现, 100以内的有98个,如下. 1000以内有6392个.
$-5/8,5/12,-15/8,-16/5,-16/15,-9/20,-1/20,24/5,8/25,25/4,-29/12,-24/29,-35/16,-35/24,-32/35,16/39,39/8,-40,-40/9,-39/40,-29/40,-11/40,3/40,-41/36,-15/44,-5/44,-45/4,-45/8,-45/32,-16/45,-8/45,-48/35,5/48,25/48,-55/12,-24/55,24/55,55/12,-27/56,-49/60,-31/60,-64/45,-63/64,-65/12,-65/32,-65/48,-64/65,-24/65,-72/41,-35/72,1/72,25/72,35/72,-75/44,-75/64,-65/76,-45/76,-15/76,-79/12,-79/60,-24/79,-80/11,-80/29,-80/39,-63/80,-23/80,-3/80,3/80,80/3,-53/84,-87/20,-40/87,40/87,87/20,-88/5,-88/15,-88/75,-3/88,-89/60,-91/20,-91/60,-40/91,40/91,91/20,-93/40,-93/80,-80/93,-95/36,-95/84,-72/95,-96/65,96/25,96/5,-99/4,-8/99,-99/100,-59/100,-33/100$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-6-3 15:40 , Processed in 0.045736 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表