- 注册时间
- 2009-2-12
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 27920
- 在线时间
- 小时
|
根据4楼,得到 $(\frac{g}{w}coswt)^2+(\frac{dh(t)}{dt})^2+2g*h(t)=2gH$, 由于$t=0,\frac{dh(t)}{dt}=0, h=0$, 得到$2gH=(\frac{g}{w})^2$,于是 $(\frac{dh(t)}{dt})^2+2g*h(t)=(\frac{g}{w}sinwt)^2$ ,与大家的表达式都一样了.
代入$x(t)=\frac{g}{w^2}sin(wt), v_x=\frac{g}{w}coswt, v_y=\frac{dh(t)}{dt}$ .得到$(frac{g^2}{w^2}-w^2x^2)(1+(\frac{dy}{dx})^2)+2gy=frac{g^2}{w^2}$
再代入$w=1,g=2$,得到$(4-x^2)(1+(\frac{dy}{dx})^2)+4y=4$,
解得的级数解是
- FullSimplify@ Normal[AsymptoticDSolveValue[{y'[x]^2 + 1 == (4 - 4 y[x])/(4 - x^2), y[0] == 0}, y[x], {x, 0, 15}]]
复制代码
\[-\frac{\left(548416667279515083+328651221955696933 \sqrt{5}\right)
x^{14}}{311057524362629271822848}-\frac{\left(319318469505+193584990733 \sqrt{5}\right)
x^{12}}{36005087881730560}-\frac{\left(5046322055+3108516389 \sqrt{5}\right) x^{10}}{108504297096896}-\frac{\left(661961+417561
\sqrt{5}\right) x^8}{2555718272}-\frac{\left(751+493 \sqrt{5}\right) x^6}{473632}-\frac{1}{608} \left(7+5 \sqrt{5}\right)
x^4-\frac{1}{8} \left(1+\sqrt{5}\right) x^2\]
\[
\begin{array}{l}
\{2\}\to \frac{1}{8} \left(\sqrt{5}-1\right) \\
\{4\}\to \frac{1}{608} \left(5 \sqrt{5}-7\right) \\
\{6\}\to \frac{493 \sqrt{5}-751}{473632} \\
\{8\}\to \frac{417561 \sqrt{5}-661961}{2555718272} \\
\{10\}\to \frac{3108516389 \sqrt{5}-5046322055}{108504297096896} \\
\{12\}\to \frac{193584990733 \sqrt{5}-319318469505}{36005087881730560} \\
\{14\}\to \frac{328651221955696933 \sqrt{5}-548416667279515083}{311057524362629271822848} \\
\{16\}\to \frac{3 \left(30156843946316183493 \sqrt{5}-50768310700641304195\right)}{421482945511362663319959040} \\
\{18\}\to \frac{6401730249995236578288477 \sqrt{5}-10852676488704345349623635}{143154153545261260420644168181760} \\
\{20\}\to \frac{29217198655361571399978320820693 \sqrt{5}-49813459901952722835109298874415}{3074776283776579564575202705370686689280} \\
\{22\}\to \frac{76922410694418290277111524272322342529 \sqrt{5}-131769584793906858026950951042610194820}{37497650100844913051987917916658339994008473600} \\
\{24\}\to \frac{306367765428805908819495576855829602244143 \sqrt{5}-526920517838982237555254585865347860119365}{682817209276345528711479190095181707954896700866560} \\
\{26\}\to \frac{7 \left(1124730159571726697786716494105843179747629199123721 \sqrt{5}-1941088901065625461808854793319932628345386374123505\right)}{79355580764959591259828985547596156249426384952861205921382400} \\
\{28\}\to \frac{11400195382419248158817249752443299743205005343219786087 \sqrt{5}-19733761070459565244248238544276829536154428023971792535}{514859008003057828093770458232803861746278385574163504017929011200} \\
\{30\}\to \frac{45725341094406126764303439683974581831865982489601948786249991 \sqrt{5}-79359243675963293063903974255823759445173376726336056345042655}{9179480275250980913076672249337008375226184796133052842242798759637811200} \\
\{32\}\to \frac{5026858404361248870369452720604724109554909826121026010489147419712211 \sqrt{5}-8744817716421956308694956817172554385330379248482743427631199807259385}{4454888936744514545179878705606257619391790254188009827677167333426452536377344000} \\
\{34\}\to \frac{3 \left(376144136097813042780953635161756342702822150777090282553749170935913665087
\sqrt{5}-655713496646735675062281431665179875467645116411360720337624780259039404605\right)}{4387921264291796304730916696952102112354045106370953988743593083203452731269505214054400} \\
\{36\}\to \frac{3 \left(87183301210404017396444748997939280839504426568428122774292399881656269072414499
\sqrt{5}-152267775313933709602876171820531520412108828095058460667778441534971459160720015\right)}{4438645634107009470013606093968868412772857867800602216853469019245284644842980694328868864000} \\
\{38\}\to \frac{91 \left(49880148878352869244715022994060520507423258485049760398151963219329638642820949901511
\sqrt{5}-87264974459224460405693075396103124192576056348956140516511506448379194840945621151585\right)}{334582059937827267694606102522612347195039850377419236352595527296398336298228453722795528313634816000} \\
\{40\}\to \frac{7 \left(89560240394621409372640914197432327371924841784127079118776560239927012104382690660892210639
\sqrt{5}-156927329577156876382386953157356826443889366498247145276952193245471460380014880788667414615\right)}{199859582265321677911963703886959782085832299264297984062095764870757878602720082775228403678394934624256000} \\
\{42\}\to \frac{3172282030710812491419189893652171295908826800880580728651179457980236886325979066015313310910170661305
\sqrt{5}-5566327072909812043748316166404953054127740986274231787411537633745600046494820803338048828741757967151}{4356982854897446823167725616095957632918731287805906826066857940891154255183791016014826604979139481915390620598272000} \\
\end{array}
\]
- a[1] = 0;
- a[n_] := If[Mod[n, 2] == 1, 0, Subscript[a, n]]; Do[
- fx = Sum[If[i == 2 m, Subscript[a, 2 m], a[i]] x^i, {i, 1, 2 m + 1}];
- sol = SolveValues[
- Coefficient[4 - 4 fx - (D[fx, x]^2 + 1) (4 - x^2), x^(2 m)] == 0,
- Subscript[a, 2 m]];
- If[Length[sol] > 0, a[2 m] = FullSimplify[Last@sol]], {m, 20}];
- fx
复制代码 |
|